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Abstract in English

With society becoming more and more reliant on software, the importance of software quality is

becoming ever more clear. Poor quality software is estimated to have cost $2.41 trillion to US society

in 2022. Poor quality software is software that rates poorly along dimensions such as security (data

cannot be compromised), reliability (the program performs as intended), or performance (the program

performs its intended task efficiently).

If poor quality software is so staggeringly expensive, why do developers not produce high quality

software to begin with?

Experience has shown that developing high quality software tends to be prohibitively expensive. Lack

of proper tooling and the difficulty of the construction of correctness proofs seem to be the main

factors behind the high costs.

This thesis studies generic programming and the Magnolia programming language for constructing

high quality software—and as a vehicle for driving down the cost of this activity. Magnolia proposes

to bridge the gap between API specifications and their actual implementation by allowing to express

both of them in a common language. The means to express mechanized formal specifications and

their relation to implementations are core to producing proofs of correctness. They also enable

high software performance by allowing the expression and automated application of semantics-

preserving rewrites that can optimize programs. Magnolia is built with genericity as its core design

goal. Magnolia’s code can be parametrized freely, and it thus enables the construction of highly

parametrized libraries whose algebraic properties are precisely specified. This encourages designing

generic, reusable APIs. Code reuse is a tried-and-true method to directly increase software quality and

reduce development costs. Code reuse allows proof reuse, which amortizes the cost of constructing

proofs over time.

We contribute a formal specification of the Magnolia programming language, and conduct a rigorous

study of how Magnolia’s approach to language design fares in the landscape of generic languages.

Magnolia also emphasizes that genericity and reusability of code are not antithetical to performance;

its programming model is particularly well-suited to high-performance computing. We apply generic

programming with Magnolia to the domain of array programming through a triplet of case studies

culminating in the specification of formally verified normalization rules and their guided application

as program optimizations on array programs for several hardware platforms.
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Abstract in Norwegian

Høy programvarekvalitet er viktig. Dette blir tydeligere ettersom samfunnet blir stadig mer digitalisert.

For eksempel anslås dårlig programvarekvalitet å ha kostet det amerikanske samfunnet $2.41 billioner

i 2022. Dårlig programvare svikter på sikkerhet (data blir kompromittert), pålitelighet (programvaren

fungerer ikke hensiktsmessig) og/eller ytelse (programvaren er ineffektiv).

Hvis dårlig programvare koster samfunnet så mye, hvorfor lages ikke høykvalitetsprogramvare i

utgangspunktet?

Utvikling av høykvalitetsprogramvare har lenge vært uhensiktsmessig dyrt. Mangel på riktig verktøy

og utfordringer med å utvikle bevis, er viktige faktorer bak de høye kostnadene.

Denne avhandlingen studerer generisk programmering og programmeringsspråket Magnolia som

virkemiddel for å utvikle programvare av høy kvalitet—og for å få ned kostnadene for dette. Magnolia

bygger bro over det semantiske gapet mellom API-spesifikasjoner og -implementering ved å bruke

samme språk for begge. Dette løser et kjernepunkt for programbevis: en presis relasjon mellom

formelle spesifikasjoner og implementasjoner. Magnolias algebraiske spesifikasjoner kan også brukes

til automatiserte semantikkbevarende omskrivninger for å øke programvarens ytelse. Magnolia sin

språkstruktur er grunnleggende generisk slik at kode kan parametriseres fritt. Til sammen åpner

dette for høyt parametriserte kodebiblioteker med presist spesifiserte algebraiske egenskaper, som

oppmuntrer til design av generisk, gjenbrukbar programvare. Gjenbruk av kode er en utprøvd metode

for å direkte øke programvarekvaliteten og redusere utviklingskostnadene. Gjenbruk av kode gir også

gjenbruk av korrekthetsbevis, som fordeler kostnadene ved å utvikle bevisene på mange applikasjoner.

Avhandlingen bidrar med en formell spesifikasjon av programmeringsspråket Magnolia, og gjennomfører

en nøyaktig utforskning av hvordan Magnolias tilnærming til språkdesign ser ut i landskapet av

generiske programmeringsspråk. Arbeidet understreker også at generisitet og gjenbruk av kode ikke

er i motsetning til høy ytelse; Magnolias programmeringsmodell er tvertimot spesielt godt egnet til

dette. Avhandlingen tar for seg tre case-studier i Magnolia for problemstillinger fra tungregning.

Tungregning krever høy ytelse på store datamengder representert i array-strukturer. Avhandlingen

kulminerer i formelt verifiserte algebraiske regler og deres anvendelse for optimalisering av array-

programmer mot ulike maskinvareplattformer.
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1

Chapter 1

Introduction

Poor quality software is expensive for society. A report by the Consortium for Information & Software

Quality (CISQ) prices the whole IT labor base in the US for 2022 at roughly $1.51 trillion [114]. The

same report evaluates that poor quality software costs at least $2.41 trillion for the US society for

the same year—i.e., about 1.6 times as much as the whole IT labor base itself. The report points to

operational failures and legacy systems as the two largest contributors to this overall figure, with an

aggregate cost in the ballpark of $2.3 trillion.

The quality of software can be measured along many axes. Common desired software traits

include security (data cannot be compromised), reliability (the program performs as intended), and

performance (the program performs its intended task efficiently). Poor quality software is software

that rates poorly along one or more of these axes. Ever-increasing cybercrime losses incurred due to

existing software vulnerabilities constitute a large part of the operational failures in the CISQ’s report.

The prevalence of software vulnerabilities points to a lack of security or reliability. Similarly, part

of the cost associated with legacy systems stems from poor software performance. If poor quality

software is so expensive, why do developers not produce high quality software to begin with?

In 2014, Klein et al. published a well-known case study in producing real-life high quality software

through the development of the seL4 microkernel [111]. The microkernel is fully verified for functional

correctness, comes with security proofs, and is highly performant—between a factor of two and a

factor of ten faster than other microkernels [157]. The detailed cost analysis provided in the paper

indicates that developing the microkernel took 2.2 person years, while writing a proof of correctness

for that implementation took20.5person years—a staggering 932% increase in development costs [111].

Producing proofs of correctness is the only way to guarantee that software does precisely what it is

meant to do
1
.

In addition to these initial formal verification costs, maintaining the correctness of the proofs

throughout the evolution of the seL4 software likewise proved to be expensive and difficult.

Elphinstone and Heiser—two of the authors of seL4—go as far as saying that “the formal verification
of seL4 creates a powerful disincentive to changing the kernel” [52]. Maintaining formally verified

software is widely considered to be prohibitively expensive [48; 72; 150].

In summary, the seL4 authors produced highly performant software with strong correctness

1
Up to what can be modeled and the trusted computing base.
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guarantees; it was roughly 10 times more expensive to develop than comparable software without

correctness proofs, and it is expensive to maintain. While the figures discussed here are anecdotal

and come with many asterisks, the point remains: producing high quality software seems to be

prohibitively expensive.

We formulate the—hopefully uncontroversial—hypothesis that given the means to produce and

maintain high quality software cheaply, developers would do so. The follow-up question comes

naturally: how can we reduce the costs associated with producing and maintaining high quality

software?

Mechanized specifications are the gateway to correctness proofs. As Dullien puts it, it is only possible

to conclude that software is flawed if one understands how a correct version of the software would

behave [51]—i.e., if one understands how the implementation of the software deviates from its

intended specification. By the same definition, software that conforms to its specification can

be deemed correct. Mechanized specifications allow the production of machine-checked proofs

of correctness [118], and also play an important role in enabling high software performance by

allowing the expression and automated application of semantics-preserving rewrites that can optimize

programs [119].

Despite these benefits, software is rarely written with associated formal specifications. Even when these

formal specifications exist, they are rarely mechanized—e.g., typeclass laws in Haskell are typically

stated only as documentation [10].

The seL4 report evaluates the cost of developing an abstract and executable specification for the

microkernel to be a mere 7 person months. Given the benefits outlined above, it seems unlikely that

this moderate additional cost is the main reason behind the lack of formal specifications in mainstream

software.

Another more likely explanation for the low incidence of formal specifications in software could be the

lack of accessible and good tooling for harnessing their potential benefits. “Mainstream” programming

languages provide little to no support for expressing sophisticated mechanized specifications or relating

implementations to specifications. And indeed, 9 out of the 20.5 person years (≈ 40%) invested in

developing the proofs of correctness for seL4 were spent improving frameworks, tools, and libraries

for proof automation and theorem proving.

Assume the seL4 team had had a programming language that had provided the means to express

mechanized specifications, a convenient way to relate them to implementations, and all the necessary

library support so that tooling would not have been a concern. They would still have spent 11.5 person

years developing their correctness proofs—a significantly lower but still prohibitively high cost.

One way to approach making the development of proofs cheaper is to enable reuse; code reuse is a

tried-and-true method to directly increase software quality and reduce development costs [23; 56; 138].

While the high costs associated with developing ad-hoc proofs will still have to be paid initially, reuse

across projects will allow amortizing this cost—whether across several products for a given company

or across independent projects [140].

Generic programming is a discipline that enables code reuse, by cleanly structuring and organizing

abstract data types and algorithms around the key algebraic properties they (or their dependencies)

must fulfill. Generic programming seeks to distill algorithms to their essence, expressing them in a

form that makes as few assumptions as possible about the interface and behaviour of the data types
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Generic programming is a sub-discipline of computer science that deals with finding abstract

representations of efficient algorithms, data structures, and other software concepts, and with

their systematic organization. The goal of generic programming is to express algorithms and

data structures in a broadly adaptable, interoperable form that allows their direct use in software

construction. Key ideas include:

• Expressing algorithms with minimal assumptions about data abstractions, and vice versa, thus

making them as interoperable as possible.

• Lifting of a concrete algorithm to as general a level as possible without losing efficiency; i.e., the

most abstract form such that when specialized to the concrete case, the result is just as efficient as

the original algorithm.

• When the result of lifting is not general enough to cover all uses of an algorithm, additionally

providing a more general form, but ensuring that the most efficient specialized form is automatically

chosen when applicable.

• Providing more than one generic algorithm for the same purpose and at the same level of

abstraction, when none dominates the others in efficiency for all inputs. This introduces the

necessity to provide sufficiently precise characterizations of the domain for which each algorithm

is the most efficient.

Figure 1.1: Definition of generic programming from Jazayeri, Musser, and Loos [102].

involved. In following this methodology, a programmer naturally builds parametrized and composable

modular building blocks—reusable code. Through providing good language support for generic

programming on the one hand and for expressive specifications on the other hand, we can realize

the cost-reduction opportunities outlined above and pave the way towards correct, highly efficient

software.

Interpretations of generic programming vary depending on what kind of parametrization a programming

language supports [62]. We follow here the definition given by Musser and Stepanov in their seminal

work in 1988 [137]. Figure 1.1 reproduces their structured definition of generic programming, taken

from Jazayeri, Musser, and Loos [102]. This definition of generic programming, unlike many others,

points to the preservation of runtime performance as an explicit goal for any lifted abstraction.

1.1 Line of Research

This work is centered around studying Magnolia [14; 35], a programming language that aims to enable

generic programming as its core design goal. Magnolia is designed with a module system based on

Goguen and Burstall’s theory of institutions [67]: it allows defining both specifications with syntactic

and semantic requirements on implementations, and corresponding implementations in the same core

language. Implementations and specifications can be related to one another by declaring modeling

(or satisfaction) relations [38]. This makes Magnolia in principle well-suited as a vehicle towards less

expensive verified, highly performant software. As outlined above, formal specifications also pave the

way for improving software performance.

By offering parametrization involving both syntactic and semantic requirements, Magnolia falls

into the category of languages offering genericity by property—as defined in Gibbons’ taxonomy of

generic programming [62]. Despite its seeming attractiveness, fully-fledged support for genericity
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by property—i.e. support for property-based specifications—has not managed to find its way into

mainstream programming languages so far.

Genericity by property is closely related to algebraic specifications. Algebraic specifications are at the

core of Stepanov’s work on generic programming [49; 104; 137; 165]. It is thus no surprise that the

mainstream programming language that came closest to concretizing genericity by property was C++,

through concepts, as envisioned in C++0x. Concepts ended up materializing in C++20 as a scaled back

version of C++0x’s: with support for syntactic (but not semantic) requirements, and no (early) type

checking of generic definitions.

As a result of this lack of support, much of the literature studying generic programming in practice

does not discuss property-based specifications—and the feature is not considered key to enabling

generic programming [61; 163]. This is somewhat surprising, since genericity by property seems

to be, by design, the most natural way of supporting generic programming. Clearly, mainstream

programming languages must be passing on opportunities for reuse by not offering this axis of

parametrization.

The work presented in this dissertation seeks to explore more deeply the interplay between

property-based specifications and more “classic” support for generic programming. Through

rigorous experiments, we confirm that Magnolia’s design choices are conducive to effective generic

programming—despite the language not offering many of the features previously thought to be key

for enabling generic programming [38]. This points to these features being more means to an end

rather than true requirements. Maybe unsurprisingly, the success of these experiments does not hinge

at all on Magnolia’s property-based specifications. It is instead better explained by Magnolia’s powerful

parametrized module system, which is sufficient to express syntactic requirements as in C++20 concepts.

We seek then to understand what additional opportunities for reuse property-based specifications

offer. For instance, Hamre already managed to exploit them for automated code verification [83].

The remaining of the exploration highlights the importance of property-based specifications for

generic programming, by bringing in focus additional kinds of reuses that they enable in the context

of software performance. We employ domain engineering techniques [84] to investigate the domain

of array programming for stencil computations, formally grounded in the Mathematics of Arrays

(MoA) formalism [127]. Property-based specifications serve first to help discover the right application

programming interface (API) to express and optimize stencil computations [28; 36; 37]. Later, we

also reuse these specifications to build term rewriting systems able to optimize stencil computations

for several hardware platforms, and to automatically derive default implementations for semantically

constrained operations [39]. As we design and extend programming languages to offer additional

opportunities for code reuse, we will make building high quality software more practical. In this

endeavour, Magnolia’s module system and property-based specifications can be sources of inspiration.

1.2 Outline of the Dissertation and Detailed Contributions

The dissertation consists of three parts—titled “Overview”, “Scientific Results”, and “Reflections”.

• Part I provides an overview of the work pursued in this dissertation and of Magnolia. It consists

of two chapters:

– Introduction is the ongoing chapter.
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– Magnolia and magnoliac—which follows this introduction—provides a never published

before formal description of the syntax and static semantics of the Magnolia programming

language as it is concretized in magnoliac. Detailed presentations of the various

constructions accompany the formalization. The chapter also offers insights into

magnoliac itself, and concludes with explanations for some notable implementation

choices made over the course of its development.

• Part II contains the bulk of our scientific results, and reproduces the content of four (already

published) research papers:

– Revisiting Language Support for Generic Programming: When Genericity Is a
Core Design Goal (Paper 1) applies a well-known framework for evaluating the generic

programming capabilities of a language [61] to assess Magnolia’s own generic facilities.

Through a reimplementation of several algorithms from the Boost Graph Library [164],

we confirm that the language lends itself well to effective generic programming. Along the

way, we also discover that features previously thought to be key to effective generic

programming are more of a means to an end, and introduce two new important

features for generic programming: variadics, and property-based specifications. The paper

introduces magnoliac, a new Magnolia compiler made available as an artifact of the

paper
2

[35]. The version of the magnoliac compiler presented there is able to use either

C++ and Python as a host language. The code for the experiments is likewise made available

in the same repository
3
.

– Finite Difference Methods Fengshui: Alignment through a Mathematics of Arrays
(Paper 2) proposes a framework for optimizing scientific array-based computations using

the MoA formalism. Burrows et al. previously made use of Magnolia’s property-based

specifications as a domain engineering tool to discover the necessary API to express

stencil computations [28]. This paper restates this API using MoA, and contributes a

rewriting system sufficient to bring stencil computations to their Denotational Normal

Form (DNF)—their abstract canonical representation. This rewriting system is shown

to be canonical—i.e. strongly confluent and terminating—and is well-suited as the

basis for automatic optimizations. We embed the MoA formalism in Magnolia using its

property-based specification facilities and contribute generic code for the studied stencil

computations.

– Padding in the Mathematics of Arrays (Paper 3) extends the framework proposed

in Paper 2 to perform hardware-specific optimizations for array computations. The

paper contributes a full formalization of exterior padding in the MoA formalism, and

derived rewriting rules suitable for introducing halos in both single and multi-process

settings. The paper demonstrates the relevance of these rewriting rules for determining the

right trade-off between inter-process communication and data/computation redundancy

through a set of experiments. The experiments and an incomplete mechanization of the

proofs from the paper are made available on GitHub
4 5

.

– P3 Problem and Magnolia Language: Specializing Array Computations for
Emerging Architectures (Paper 4) exploits the results of Paper 2 and Paper 3 to build

an optimizer for stencil computations in Magnolia. The paper contributes two new

2https://github.com/magnolia-lang/magnolia-lang.

3https://github.com/magnolia-lang/magnolia-lang/tree/main/examples/bgl.

4https://github.com/mathematics-of-arrays/padding-in-the-mathematics-of-arrays.

5https://github.com/mathematics-of-arrays/moa-formalization.

https://github.com/magnolia-lang/magnolia-lang
https://github.com/magnolia-lang/magnolia-lang/tree/main/examples/bgl
https://github.com/mathematics-of-arrays/padding-in-the-mathematics-of-arrays
https://github.com/mathematics-of-arrays/moa-formalization
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module transformations in Magnolia that enable new ways of exploiting its property-

based specification facilities: rewrite, and implement. The rewrite transformation allows

to produce term rewriting systems from formal specifications expressed in Magnolia and

to use them to automatically rewrite implementations. The implement transformation

allows to derive function implementations from these formal specifications. We

implement the core specifications developed in Paper 2 and Paper 3 in Magnolia, and

complement the rewriting system with hardware-specific rewriting rules. We demonstrate

through experiments that the resulting optimizer allows to run the same program

efficiently across different types of hardware (CPU and GPU in the experiments). In

order to allow for running programs on GPU, we also add support for using CUDA as a

host language to magnoliac. The compiler extensions and experiments are available in a

branch of the repository for magnoliac on GitHub
6 7

.

• Part III concludes the dissertation. It consists of a single chapter:

– Concluding Remarks ties the bow on this dissertation with a reflection on the learnings

gleaned throughout this work. The chapter outlines some possible future research and

engineering directions around Magnolia and property-based specifications.

The papers mentioned above are included in the following as they were published, save for stylistic

improvements to fit the format of this dissertation. The appendices for Paper 1 and Paper 4 are

aggregated at the end of the thesis, and there is a single bibliography for the whole dissertation.

6https://github.com/magnolia-lang/magnolia-lang/tree/base-program.

7https://github.com/magnolia-lang/magnolia-lang/tree/base-program/examples/pde.

https://github.com/magnolia-lang/magnolia-lang/tree/base-program
https://github.com/magnolia-lang/magnolia-lang/tree/base-program/examples/pde
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Chapter 2

Magnolia and magnoliac

2.1 Motivation

The Magnolia programming language was originally designed to complement the hard-to-extend C++

as a vehicle for exploring novel language features for programming numerical software in Bagge’s

work [14, Chapter 1.3]. The language was designed to be semantically close to C++ and the compiler

emitted C++ code—so as to both retain full control over resource usage and remain compatible with

existing High-Performance Computing (HPC) compilers. Magnolia was built to be

1. easy to transform and extend;

2. able to harness the power of the existing C++ high-performance compilers;

3. able to express HPC-oriented optimisations (i.e. produce HPC-grade programs at the end of

the compilation process).

The overarching goal for exploring these novel language features through Magnolia has always been

to propose and support a development method geared towards developing high quality software [14,

Introduction]. Key attributes of high quality software include reliability, robustness, flexibility,

portability, and efficiency. Magnolia attempts to provide the keys to building high quality software by

providing powerful generic facilities through a flexible intermix of specifications and implementations.

As alluded to in the introduction, Magnolia makes enabling Stepanov-style generic programming [102]

its core design goal. Bagge emphasizes the importance of abstraction (or generalization) for high-quality

software development to be a fundamental insight guiding the whole approach.

Magnolia naturally grew over time to implement many experimental language features, such as

functionalisation and mutification [13], generated types, type partitions, and more. While this

proliferation of language features was consistent with the stated goals of Magnolia, it was not

accompanied by any kind of centralized documentation—providing a full specification was considered

to be a hindrance to the stated objective of exploring and implementing novel language features. When

picking Magnolia up again many years later, this context—or lack thereof—made developing a shared

understanding of what Magnolia was extremely difficult. We were—ironically—bitten by our own

reluctance to build formal specifications!

The first implementation of a compiler for Magnolia was extremely slow. This is largely due to a design
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that required constructing and traversing chunks of the underlying Abstract Syntax Tree (AST) an

inordinate number of times [16]. As a result, the compilation of the original Magnolia basic library

(around 8000 lines of code) took over 30 minutes. The compiler was also specifically constructed

to work as a plugin for the Eclipse IDE, and did not expose facilities for command-line compilation.

This excluded developing Magnolia code in other IDEs, and later on caused issues when—due to

dependencies on older packages and lack of maintenance—the compiler became accessible only

through many-years-old versions of Eclipse.

This lack of formal specification and difficulty of using the implementation motivated the development

of magnoliac, a new command-line compiler for Magnolia [35]. Our goals and philosophy for

developing magnoliac ended up being as follows:

1. magnoliac needs to be decoupled from any particular IDE, and to support command-line

compilation;

2. magnoliac needs to be reasonably fast;

3. magnoliac must be easy to reuse and extend by future students and researchers. That is to say

that the compiler must be documented well, and clear extension points must be defined;

4. magnoliac will produce good and well-located error diagnostics;

5. magnoliac will emit structured code easily parsable by humans. This so that generated code can

be more or less edited by hand and included in a project without making that project depend

on Magnolia. This additionally allows debugging performance issues (among others) easily in

the generated code;

6. magnoliac will allow compiling Magnolia code to several target languages, including C++;

7. every non-trivial language design choice must be documented and justified;

8. every new feature must be implemented in its most restricted useful form unless there is a

(justifiably) better choice. It is possible to relax strict restrictions on a feature made a priori and

to remain backwards compatible, but the opposite (restricting features a posteriori) is not.

Though we initially intended for magnoliac to become able to successfully compile the original

Magnolia basic library, this effort was hindered by the lack of available documentation. As it became

clear that some of the features necessary to accomplish this would be difficult to design in a principled

and usable way, we gave up on this goal. To this day, the compiler presented here is only compatible

with a subset of the code that the initial compiler accepted. This is largely by design, but also due to

our work over the last few years focusing only on a subset of the previously implemented features.

In the absence of a previous specification, the language becomes most accurately defined by its

compiler implementations. As a result, we should be cognizant that the Magnolia programming

language as presented in the following is a reflection of magnoliac’s implementation—which diverges

from the previous compiler implementation, but doesn’t betray the spirit of the language. This thesis

does not redesign the Magnolia programming language, but merely tweaks and clarifies some aspects

of it. Specifying the language and building a compiler for it were pre-requisites for the rest of the

work in this thesis, on MoA, and on generic programming.

We first give a short primer on the Magnolia programming language. We follow up with a rigorous

presentation of the language, complete with a formal syntax and accompanying typing rules.

Magnoliac’s implementation of the language is extremely close to the formal description provided

here, but there are slight variations. This is because this formal description postdates the initial

development of the compiler, and uncovers a few minor weaknesses in magnoliac. These discrepancies

will be resolved when the necessary changes make it into the compiler’s code base. Lastly, we briefly
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discuss some of the interesting implementation choices made in magnoliac.

The current chapter is highly technical—Paper 1 synthesizes core Magnolia concepts more digestibly.

2.2 A Primer on Magnolia

The content of this primer largely follows that of our paper “Revisiting Language Support for Generic
Programming: When Genericity Is a Core Design Goal” [38] (Paper 1 of the present dissertation).

Algebraic specifications are at the core of Stepanov’s work on generic programming [49; 104; 137; 165].

Highly influential early work in the field is Goguen’s parameterized programming that emphasizes code

reuse and modularity [60; 63]. Siek characterizes parameterized programming as similar to Stepanov’s

notion of generic programming, but without the same emphasis on efficiency [159]. Parameterized

programming thus also aims at expressing algorithms in their most general form, making both their

syntactic and semantic requirements explicit, and well organized.

As the embodiment of a language for Stepanov-style generic programming, Magnolia’s lineage

naturally traces back to parameterized programming, and to an approach to language design rooted

in algebraic specifications.

2.2.1 Designing for Generic Programming with Algebraic Specifications

Algebraic specifications and Goguen and Burstall’s theory of institutions [67] have guided the design

of the OBJ language family [71] (OBJ2, OBJ3, CafeOBJ, Maude. . . ). The OBJ language family was

(and still is) a highly influential representative for programming languages based on the algebraic

approach. We use these languages to introduce various important concepts, and later explain how the

same concepts manifest in Magnolia.

Languages in the OBJ family provide extensive support for parameterized programming by design.

OBJ2 and OBJ3 are both implementations of the OBJ logical programming language that differ

in their operational semantics [70]. Maude incorporates most features of OBJ3 and significantly

expands the capabilities of OBJ2 and OBJ3 for parameterized programming. Maude and CafeOBJ

are still under active development. We describe below the general design of languages intended to

support generic programming using algebraic specifications, and explain how it is concretized in

Maude. Maude is based on rewriting logic [42; 66], and uses membership equational logic as its

underlying equational logic. Our discussion only touches upon the fragment of Maude related to

membership equational logic, where Maude’s support for parameterized programming is concretized.

Note that grounding Maude in rewriting logic is purely a design choice, and not a requirement for

institution-based languages.

The general approach relies on a bilevel module system, with modules that allow for specifying

generic APIs on the one hand and modules that allow for writing concrete programs on the other

hand [69]. Modules of the same kind may be composed, and program modules can be parameterized

by specification modules. Specifications consist of an algebraic signature defining sorts and (total and

partial) operations, along with semantic requirements on their behaviour called axioms. Satisfaction

relations can be expressed which describe how a program (or a specification) satisfies the requirements
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of a given specification.

Specifications are given in Maude through functional theories—Goguen introduced the notion of

types as theories [65]. Functional theories allow expressing semantic requirements using equations and

conditional equations. In addition, Maude allows the specification of subsorting relations along with

membership axioms. This approach allows flexible control of partiality and declaring relationships

between types, e.g., natural numbers and integers.

Maude’s functional modules allow for writing programs using the same constructs as functional

theories—where equations and conditional equations define functions and data types in lieu of

functional theories’ semantic requirements, and where the rewriting system engendered by these

equations must be confluent and terminating. The semantics of a functional module in Maude is the

initial algebra defined by the module’s equations, and evaluation is performed using an equational

rewriting engine. Functional modules can be parameterized by functional theories: we speak of

parameterized functional modules. Maude programs can be metarepresented as data and manipulated

to produce new programs. This powerful mechanism of reflection allows generating so-called

dependent parameterized modules such as n-tuples containing n sorts and n projection functions [45,

Section 21.3.1]. Maude’s built-in types are efficiently implemented in C++. Contrarily to the previous

OBJ2 and OBJ3, Maude does not allow the user to implement custom primitive types in an external

language.

Satisfaction relations in Maude are stated through views. Every sort (respectively function) in the

view’s source theory must be mapped (renamed) to a corresponding sort (respectively function) in

the view’s target module, and the mappings must preserve the subsorting structure of the source

theory in the target module. It is also possible to implement functions on the fly to resolve signature

mismatches.

2.2.2 Magnolia in a Nutshell

As alluded to above, the Magnolia programming language is designed for Stepanov-style generic

programming—i.e. parameterized programming with an added emphasis on efficiency. The language

takes the same general approach based on algebraic specifications as described above, and its module

system is likewise based on Goguen and Burstall’s theory of institutions.

Listing 2.1 shows uses of the different module types. A signature allows defining types and

operations. A concept is a signature augmented with axioms that restrict the properties of the

types and operations. A concept serves the same purpose as a functional theory in Maude, and

the signature and concept modules constitute the specification layer of the module system. An

implementation allows the same declarations as a signature , but also the definition of generic

operation implementations; it is the equivalent of a parameterized functional module in Maude. A

program is a specific kind of implementation in which all the specified operations and types are

matched with (non-generic) concrete implementations; either Magnolia code that has a concrete

implementation or an implementation in the base library in the host language. The implementation
and program modules constitute the program layer of the module system. Constructs analogous to

Maude’s metaprogramming facilities are under investigation for Magnolia [87].

Types (sorts) in Magnolia are opaque identifiers. One cannot explicitly parameterize them, nor

can one define relations such as subtyping relations between them. Types and operations that
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construct or destructure them need to come from a host language. Operations can be functions,

procedures, or predicate s. Procedure calls are prefixed with the call keyword, while function

calls follow the usual uncurried call syntax. Predicates are treated as functions with a built-in, non-

reimplementable return type. Magnolia’s approach to partiality is based on guarded algebras [88]:

an operation can be guarded by a predicate, which then acts as a precondition. In addition to

their types, a procedure associates modes to its arguments: obs (read-only), upd (can be read and

written to), and out (write-only, and must be written to) [18]. ExampleProgram in Listing 2.1 shows

two implementations of a multiplication by three, one as a procedure (timesThreeUpdateRef)

and the other as a function (timesThree). In the example’s program, the int type and add
function are externally defined in Python and come from PyConcreteSemigroup. The line

use Magma[ T => int, bop => add ] applies a renaming function to the content of theMagma
signature and brings it into scope. The renaming maps T to a new name int, and bop to a new

name add. It is assumed that the primitives implemented in the host language do not have side-effects,

except for the modification of arguments to procedures where the argument mode is out or upd.

A satisfaction allows defining a modeling relation between an implementation and a concept; or

between two concepts—it is the equivalent of a view in Maude. Signature mismatches are resolved

through the renaming mechanism.

Magnolia semantics are tightly coupled to abstracting over hardware features: primitive types and

operations may directly represent characteristics of the underlying hardware architecture, such as

instruction sets, memory layout, etc. This enables Magnolia code to run efficiently on a variety of

hardware, and to explore software for high-performance computing (HPC) [39]—making it suitable

to address also the efficiency aspect of generic programming. This feature enables the user to utilize

features of new hardware, e.g., posit numbers [80] by writing code directly in the targeted host

language. Magnolia’s notions of statements and expressions have semantics compatible with their

counterpart in e.g. C++ and Python.

The notion of concepts, around which specifications in Magnolia are constructed, is from Stepanov

and Musser [137].
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Listing 2.1: The main Magnolia building blocks.

s i g n a t u r e Magma = {
type T;
f u n c t i o n bop(t1: T, t2: T): T;

}

c o n c e p t Semigroup = {
use Magma;
axiom bopIsAssociative(t1: T, t2: T, t3: T) {

a s s e r t bop(t1, bop(t2 , t3)) == bop(bop(t1, t2), t3);
}

}

implementat ion PyConcreteSemigroup =
e x t e r n a l Python lib.int_impl {

use Magma[ T => int , bop => add ];
use Magma[ T => int , bop => mul ];

}

program ExampleProgram = {
use PyConcreteSemigroup;
procedure timesThreeUpdateRef(upd i: int) {

i = add(add(i, i), i);
}

f u n c t i o n timesThree(i: int): int {
var mutable_i = i;
c a l l timesThreeUpdateRef(mutable_i );
v a l u e mutable_i;

}
}

s a t i s f a c t i o n ExampleProgramHasAddSemigroup =
ExampleProgram models Semigroup[ T => int , bop => add ];

s a t i s f a c t i o n ExampleProgramHasMulSemigroup =
ExampleProgram models Semigroup[ T => int , bop => mul ];
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2.3 Specifying Magnolia(c)

In the following, we present each of Magnolia’s constructs and provide the complete typing rules for

the language as they are concretized (or intended to be concretized) in magnoliac. We discuss some

differences compared with the previous main compiler of the language. We don’t delve into parsing

and related details. Likewise, we do not discuss dynamic semantics of the language.

2.3.1 Grammar of Magnolia

Figure 2.1 shows the syntax of Magnolia.

Magnolia code features two kinds of identifiers:

1. unqualified names, which match the regex [a-zA-Z0-9_]+. Unqualified names correspond

to e.g., names of modules, sources and targets of renamings, variables, types or operations;

2. fully qualified names, which match the regex (unqualified name‘.’)* unqualified name. Fully

qualified names are used for paths on the file system, and for package and module dependencies,

where unqualified names may be ambiguous.

2.3.2 Static Semantics of Magnolia
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package ::= package-head top-level. . . package

package-head ::= package package-name imports package-name. . . ; package header with imports

| package package-name ; package header

top-level ::= module-type id = module-expr module declaration

| renaming id = renaming-block renaming declaration

| satisfaction id = satisfaction-expr satisfaction declaration

satisfaction-expr ::= module-expr models module-expr satisfaction expression

| module-expr with module-expr models module-expr parameterized satisfaction expression

module-type ::= signature | concept | implementation | program module kinds

module-expr ::= id module reference

| { construct. . . } inline module expression

| external host-language package-name module-expr external module expression

| signature (module-expr) signature module transformation

| module-expr renaming-block rename module transformation

| rewrite module-expr with module-expr int rewrite module transformation

| implement module-expr in module-expr implement module transformation

renaming-block ::= [ renaming, . . . ] total renaming block

| [[ renaming, . . . ]] partial renaming block

renaming ::= id => id inline renaming

| id renaming reference

host-language ::= C++ | Cuda | Python host languages

construct ::= require decl required declaration

| decl declaration

| require module-expr module requirement

| use module-expr module import

prototype ::= op-sig total prototype

| op-sig guard expr guarded prototype

op-sig ::= function id (arg, . . . ) : id function signature

| predicate id (arg, . . . ) predicate signature

| procedure id (mode arg, . . . ) procedure signature

| axiom id (arg, . . . ) axiom signature

stmt ::= call id(expr, . . . ) procedure call

| { stmt ; . . . } effectful block

| var id : id variable declaration

| var id : id = expr variable definition

| var id = expr variable definition

| id = expr variable assignment

| if expr then stmt else stmt effectful conditional

| assert expr assertion

| value expr value statement

| skip no-op

decl ::= type id ; type declaration

| prototype ; operation declaration

| prototype = expr ; operation definition

| prototype { stmt ; . . . } operation definition

arg ::= id : id typed argument

mode ::= obs read mode

| out write mode

| upd read/write mode

expr ::= id variable

| id(expr, . . . ) function call

| id(expr, . . . ) : id typed function call

| if expr then expr else expr conditional

| { stmt. . . ; value expr; } value block

Figure 2.1: The syntax of Magnolia as supported by magnoliac [35]. Each file is parsed as a package.

Support for the rewrite and implement module transformations is experimental and not part of the

main development branch of magnoliac at the time of writing. These transformations are discussed

in details in Paper 4.
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2.3.2.1 Packages

Magnoliac parses each input file as a package whose name must correspond to the path to the file—

with ‘.’ used to denote between directory names instead of classical directory separators (à la Java).

A package contains a header, which determines its name and dependencies on other packages, and of

a sequence of top-level declarations.

Magnoliac takes in a path towards a target package through its command line interface, and compiles

it following these coarse-grained steps:

1. resolve the package’s dependencies (see Import system below);

2. verify that the target package’s dependencies’ top-level declarations are correctly constructed

(see Top-level declarations further down);

3. verify that the target package itself is correctly constructed;

4. for each program module in the target package, emit corresponding code in a given host

language (today one of C++, Python, or CUDA).

Import system The dependencies of a package are the packages imported in the header along with

their transitive dependencies. The compiler parses only package headers during dependency analysis

(as opposed to whole packages). This decision is driven by the desire to limit parsing failure cases, in

order to report only errors that are meaningful in the context of dependency analysis. This is also

more efficient than parsing whole files, but this is not a primary concern.

Dependency analysis can fail in only three ways (excluding out-of-memory errors and the likes): (1) the

target package or one of its dependencies does not have a corresponding file, (2) the target package’s

or one of its dependencies’ package header can’t be parsed correctly, or (3) the dependency graph

contains cycles.

Cyclic package dependencies are theoretically well-behaved thanks to Magnolia’s modularity—so long

as there are no cyclic dependencies between top-level declarations. However, performing this analysis

across package boundaries is more complicated than performing it only within a single package, and it

is dubious whether any potential benefit would be worth the added complexity. Dependency analysis

between top-level declarations is discussed further in the discussion on top-level declarations.

Magnolia’s import system relies on two classes of top-level declarations: local declarations, and

imported declarations. Local declarations are declarations made directly in the target package, while

imported declarations are declarations accessible in the target package’s context by virtue of being

imported from other packages. Importing a package makes that package’s local declarations accessible

in the local context, but not its imported declarations. Imports can not (yet) be qualified, but

references can. Importing only local declarations allows for a simple import system, where name

collision resolution is only seldom necessary. When attempting to resolve an (unqualified) top-level

reference, the name is first checked against all the local declarations of the package. If no match is

found, imported declarations are checked next. In that case, it may be necessary to fully qualify the

reference if several imported packages define the same name.

Figure 2.2 presents the typing-rules relevant at the package level, and Figure 2.3 presents some necessary

helper functions. We define informally a helper function content such that given the name π of

a package, content(π) returns the content of the file with a matching name relative to the root
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Well-formed packages p ok

WF-Package

(package π) ok T ok in π

(package π; T ) ok

WF-PackageImports

(package π imports P) ok T ok in π

(package π imports P; T ) ok

Well-formed package headers η ok

WF-PackageHeader

(file π) ok

(package π) ok

WF-PackageHeaderImports

(file π) ok package-header(P) ok
π ∉ dependenciespkg (π)
(package π imports P) ok

Figure 2.2: Typing rules for packages.

Definition of dependenciespkg(π), and package-header(π)

content(π) = (package π;T )
dependenciespkg (π) = ∅

content(π) = (package π imports P;T )

dependenciespkg (π) =
⋃
p∈P

dependenciespkg (p) ∪ P

content(π) = (package π;T )
package-header(π) = (package π)

content(π) = (package π imports P;T )
package-header(π) = (package π imports P)

Figure 2.3: Helper functions at the package level. dependenciespkg(π) returns all the (transitive)

dependencies of π. package-header(π) extracts the header of π. content(π) returns the content

of the file with name matching the package name π relative to the root directory in which compilation

happens.

directory in which compilation happens. If there is no matching file, the function does not succeed.

The judgment (file π) ok holds if the name of the file matches the name of the package π that it

contains.

2.3.2.2 Top-level declarations

A top-level declaration in Magnolia binds one of three different kinds of expressions to an identifier,

i.e. module expressions (the identifier denotes a module), renaming expressions (the identifier denotes

a renaming), and satisfaction expressions (the identifier denotes a satisfaction relation). Each kind of

top-level declaration comes with its own namespace, allowing e.g. a renaming to have the same name

as a module. References to top-level declarations are never ambiguous with regards to which kind of

declaration is referred to, and having separate namespaces thus does not add any complexity when

resolving references.

Modules Modules constitute Magnolia’s primary building blocks. Modules come in four flavours:

signatures, concepts, programs, and implementations. Each kind of module poses different restrictions

regarding what can be expressed.
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A signature allows the declaration of types and operation prototypes. A concept allows the same

declarations as a signature, but also the specification of semantic requirements on types and operations

through axioms. A program demands the concrete definition of all its types and operations. An

implementation allows the same declarations as a signature, but also the provision of concrete

definitions for types and operations. An implementation can be seen as a program parameterized by a

signature—or equivalently as a function from programs to programs.

Concepts and their axioms are at the heart of Magnolia’s design, and allow the expression of powerful

specifications. The discussion on module-level declarations gives a detailed explanation of axioms and

their role.

The code generated by magnoliac when compiling a package does not reproduce the package’s

hierarchy of modules. Instead, programs are the only modules for which (self-contained) code is

generated. Concepts may however be used to create and apply transformations on programs at

compile-time. The discussion on module expressions provides more information about such module

transformations.

Renamings A top-level renaming defines a renaming function over module expressions, and

consists of a single renaming block. A renaming block is a mapping from names to names, and can be

either partial, or total.

Listing 2.2 shows the difference between total and partial renaming blocks. A total renaming block

can only be applied on a module expression successfully if all the “source” names in the block exist in

the module expression. A (well-constructed) partial renaming block always applies successfully.

Listing 2.2: Applying a renaming as a total and as a partial renaming block

renaming Renaming = [ S o u r c e => T a r g e t ] ;

s i g n a t u r e S i g 1 = { type Type ; } [ Renaming ] / / T o t a l , f a i l s !

s i g n a t u r e S i g 2 = { type Type ; } [ [ Renaming ] ] / / P a r t i a l , s u c c e e d s !

Total renaming blocks and the syntax for partial renaming blocks constitute one of the new language

features introduced in magnoliac. The original Magnolia compiler treated all renaming blocks as

partial. This approach makes it easy to define large renaming blocks of common renamings and to

apply them whenever relevant—e.g. to map an infix function like _*_ to a corresponding prefix

function like mul. The drawback of that approach is that a renaming will silently fail to apply

whenever its source name contains a typo—or whenever the name of the declaration intended to be

renamed contains a typo. The error then surfaces much later, when one attempts to use the name

that one expects the renamed module to define. Because this can happen after many layers of reuse,

such a mistake is typically difficult to track down. Adding total renaming blocks to Magnolia while

retaining partial renaming blocks allows for better error locations in the ad-hoc renaming case, while

still allowing the use of partial renaming blocks whenever convenient.

Renamings are crucial to enabling a powerful reuse mechanism in Magnolia. This is discussed in

more details in Paper 1.

Figure 2.4 gives the typing rules for a renaming block, and Figure 2.5 provides definitions for the

relevant helper functions.
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Well-formed renaming blocks R ok in T

WF-TotalRenamingBlock

distinct(sources(flatten-renamings(r, T ))) (∃id, r = id) ⇒ (∃t ∈ T, (t = (renaming id = r′)))
[r] ok in T

WF-PartialRenamingBlock

distinct(sources(flatten-renamings(r, T ))) (∃id, r = id) ⇒ (∃t ∈ T, (t = (renaming id = r′)))
[[r]] ok in T

Figure 2.4: Typing rules for renaming blocks. T here is a set of available top-level declarations.

Renaming blocks can exist independently of any module expression. As such, the condition of totality
particular to total renaming blocks needn’t be checked here, but rather directly in the typing rules of

the relevant module transformation.

Definition of distinct(N )

distinct(N ) = ∀n1 ∈ N ∀n2 ∈ N \ n1, n1 ≠ n2

Definition of sources(R)

sources(R) = [source(r) | r ∈ R] where source(src => tgt) = src

Definition of flatten-renamings(R,)

flatten-renamings(R, T ) =

∑
r∈R

flatten-renaming(r, T )

flatten-renaming(src => tgt, T ) = [src => tgt]

∃r′, (renaming ρ = [r′] ∈ T ) ∪ (renaming ρ = [[r′]] ∈ T )
flatten-renaming(ρ, T ) = r′

Figure 2.5: Helper functions necessary to check the well-formedness of renaming blocks.

distinct(N ) returns true if all the names in a sequence of names are unique, and false otherwise.

sources(R) traverses a sequence of renamings, and for each of them, captures its source name.

flatten-renamings(R, T ) takes a sequence of renamings, and returns the corresponding sequence

of inline renamings after resolving all references to top-level named renamings. The function fails if a

named renaming can not be resolved.
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Figure 2.6 outlines Magnolia’s renaming algorithm all the way down from module-level declarations.

Satisfaction relations Satisfaction relations record facts about programs and specifications. A

satisfaction relation describes how and when the requirements of a given specification are satisfied by

a given implementation or specification. The body of a satisfaction relation is a satisfaction expression.

Satisfaction expressions may refer to modules, module expressions may refer to other modules and

renamings, and renaming blocks may refer to other renamings. The correctness of all the top-level

declarations in a package is checked by ensuring that the set of renamings and the set of modules each

form a directed acyclic graph, and then verifying—in this order—the correctness of all renamings,

modules, and satisfactions.

The formal typing rules for Magnolia’s top-level declarations are given in Figure 2.7. Figures 2.8

and 2.9 define additional relevant helper functions.



2 20 Magnolia and magnoliac

Definition of renaming on module-level declarations rename(d, r)

rename(require d, r) = require rename(d, r)

rename(type τ, r) = type rename(τ, r)

rename(prototype = e, r) = rename(prototype, r) = rename(e, r)

rename(prototype guard g, r) = rename(prototype, r) guard rename(g, r)

rename(prototype guard g = e, r) = rename(prototype, r) guard rename(g, r) = rename(e, r)

rename(function f (x :τ) :τr , r) = function rename(f, r) (x : rename(τ, r)) : rename(τr , r)

rename(predicate p(x :τ), r) = predicate rename(p, r) (x : rename(τ, r))

rename(procedure p(ω x :τ), r) = procedure rename(p, r) (ω x : rename(τ, r))

rename(procedure p(ω x :τ) b, r) = rename(procedure p(ω x :τ), r) rename(b, r)

rename(procedure p(ω x :τ) guard g b, r) = rename(procedure p(ω x :τ) guard g, r) rename(b, r)

rename(axiom a(x :τ) b, r) = axiom rename(a, r) (x :rename(τ, r)) rename(b, r)

Definition of renaming on statements rename(s, r)

rename({s}, r) = {rename(s, r)}

rename(call p(e), r) = call rename(p, r) (rename(e, r))

rename(var x :τ, r) = var x :rename(τ, r)

rename(var x :τ = e, r) = var x :rename(τ, r) = rename(e, r)

rename(var x = e, r) = var x = rename(e, r)

rename(x = e, r) = x = rename(e, r)

rename(if e then s1 else s2, r) = if rename(e, r) then rename(s1, r) else rename(s2, r)

rename(assert e, r) = assert rename(e, r)

rename(value e, r) = value rename(e, r)

rename(skip, r) = skip

Definition of renaming on expressions rename(e, r)

rename(variable, r) = variable

rename(f (e), r) = rename(f, r) (rename(e, r))

rename(f (e) :τr , r) = rename(f, r) (rename(e, r)) :rename(τr , r)

rename(if c then e1 else e2, r) = if rename(c, r) then rename(e1, r) else rename(e2, r)

rename({s; value e; }, r) = {rename(s, r); value rename(e, r); }

Definition of renaming on names rename(ν, r)

∃!ν2, (ν1 => ν2) ∈ r
rename(ν1, r) = ν2

�ν2, (ν1 => ν2) ∈ r
rename(ν1, r) = ν1

Figure 2.6: Implementation of Magnolia’s renaming algorithm. Renaming applies on module-level

declarations and references made to them in statements and expressions. The renaming algorithm

always processes an entire renaming block at a time, and assumes that it has been flattened—i.e. it

contains only inline renamings. See the definition of flatten-renamings(r, T ) in Figure 2.4 for

more details. The renaming block is not allowed to map the same source name to several target names.
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Well-formed top-level declarations c ok in π

WF-NamedRenaming

c = (renaming ρ = r) ρ ∉ namesrenaming (local(π) \ c) r ok in Δpkg (π) \ c
c ok in π

WF-SignatureModule

c = (signature σ = m) σ ∉ namesmodule (local(π) \ c) m ok in Δpkg (π) \ c
Δmod (m,Δpkg (π) \ c) ⊂ Δabs (m,Δpkg (π) \ c)

c ok in π
WF-ConceptModule

c = (concept σ = m) σ ∉ namesmodule (local(π) \ c) m ok in Δpkg (π) \ c
∀d ∈ Δmod (m,Δpkg (π) \ c), d ∈ Δabs (m,Δpkg (π) \ c) ∪ is-axiom(d)

c ok in π
WF-ImplementationModule

c = (implementation σ = m) σ ∉ namesmodule (local(π) \ c) m ok in Δpkg (π) \ c
∀d ∈ Δmod (m,Δpkg (π) \ c),¬is-axiom(d)

c ok in π
WF-ProgramModule

c = (program σ = m) σ ∉ namesmodule (local(π) \ c) m ok in Δpkg (π) \ c
(implementation σ = m) ok in π ∀d ∈ Δabs (m,Δpkg (π) \ c), d ∈ {sig(d′) | d′ ∈ Δcon (m,Δpkg (π) \ c)}

c ok in π

WF-Satisfaction

c = (satisfaction σ = s) σ ∉ namessatisfaction (local(π) \ c) s ok in π
c ok in π

Figure 2.7: Typing rules for top-level declarations. A top-level declaration can either be a named

renaming, a module, or a satisfaction relation. A module is either a signature, a concept, an

implementation, or a program.
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Definition of Δpkg(π)

Δpkg (π) = local(π) + [local(p) | p ∈ dependenciespkg (π)]

Definition of local(π)

content(π) = (package π;T )
local(π) = T

content(π) = (package π imports P;T )
local(π) = T

Definition of Δmod(m,T )

kw σ = m ∈ T kw ∈ {signature, concept, implementation, program}
Δmod (σ, T ) = Δmod (m,T )

Δmod ({U ;D}, T ) =

∑
u∈U Δdep (u, T ) +D

Δmod (m[r], T ) = [rename(d, flatten-renamings(r, T )) | d ∈ Δmod (m,T )]

Δmod (m[[r]], T ) = [rename(d, flatten-renamings(r, T )) | d ∈ Δmod (m,T )]

Δmod (signature(m), T ) = [sig(d) | d ∈ Δmod (m,T )]

Δmod (external h p m, T ) = Δmod (m,T )

Definition of Δdep(u, T )

Δdep (use m,T ) = Δmod (m,T )

Δdep (require m,T ) = [require sig(d) | d ∈ Δmod (m,T ), (�(a, x, τ, b), d = axiom a(x : τ) b)]

Definition of sig(d)

sig(function f (x : τ) : τr) = function f (x : τ) : τr
sig(function f (x : τ) : τr = e) = function f (x : τ) : τr
sig(procedure p(ω x : τ)) = procedure p(ω x : τ)

sig(procedure p(ω x : τ) b) = procedure p(ω x : τ)

sig(o guard e) = o guard e

sig(o guard e b) = o guard e

sig(require d) = require d

sig(type τ) = type τ

sig(predicate p(x : τ)) = predicate p(x : τ)

sig(predicate p(x : τ) = e) = predicate p(x : τ)

sig(o guard e = e′) = o guard e

Figure 2.8: Δpkg(π) returns a sequence of all the top-level declarations accessible within package

π. local(π) returns the top-level declarations specifically introduced in π. Δmod(m,T ) flattens a

module expression m to its corresponding set of declarations. The required rename(d, r) helper

function corresponds to the renaming algorithm outlined previously in Figure 2.6. Similarly,

Δdep(u, T ) flattens a dependency expression into its corresponding set of declarations. sig(d)
maps a module-level declaration to its signature.
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Definition of namesrenaming(T ), namesmodule(T ), and namessatisfaction(T )

namesrenaming (T ) = {ρ | ∃r, (renaming ρ = r) ∈ T }

namesmodule (T ) = {σ | ∃m∃kw ∈ {signature, concept, implementation, program}, (kw σ = m) ∈ T }

namessatisfaction (T ) = {σ | ∃(m1, m2), (satisfaction m1 models m2) ∈ T } ∪

{σ | ∃(m1, m2, m3), (satisfaction m1 with m3 models m2) ∈ T }

Definition of Δabs(m,T ) and Δcon(m,T )

kw σ = m ∈ T kw ∈ {signature, concept, implementation, program}
Δabs (σ, T ) = Δabs (m,T )

Δabs ({U ;D}, T ) =

⋃
u∈U

Δ′
abs (u) ∪ {d | d ∈ D, is-abstract(d)}

where Δ′
abs (use m) = Δabs (m,T )

Δ′
abs (require m) = {require sig(d) | d ∈ Δmod (m,T )}

Δabs (signature(m), T ) = Δmod (signature(m), T )

Δabs (external h p m, T ) = {d | d ∈ Δmod (m,T ), is-required(d)}

Δabs (m[r], T ) = Δabs ({Δmod (m[r], T )}, T )

Δcon (m,T ) = {d | d ∈ Δmod (m,T ), d ∉ Δabs (m,T )}

Definition of is-required(d), is-abstract(d), and is-axiom(d)

is-required(require d) = is-abstract(d)

is-abstract(require d) = is-abstract(d)

is-abstract(type τ) = ⊤

is-abstract(o guard e) = ⊤

is-abstract(o guard e = e′) = ⊥

is-abstract(o guard e b) = ⊥

is-axiom(axiom a(x : τ) b) = ⊤

is-required(d | �d′, d = require d′) = ⊥

is-abstract(function f (x : τ) : τr) = ⊤

is-abstract(function f (x : τ) : τr = e) = ⊥

is-abstract(procedure p(ω x : τ)) = ⊤

is-abstract(procedure p(ω x : τ) b) = ⊥

is-abstract(predicate p(x : τ)) = ⊤

is-abstract(predicate p(x : τ) = e) = ⊥

is-abstract(axiom a(x : τ) b) = ⊥

is-axiom(d | �(a, x, τ, b), d = axiom a(x : τ) b) = ⊥

Figure 2.9: Second set of helper functions for checking top-level constructs. namesrenaming(T ),

namesmodule(T ), and namessatisfaction(T ) respectively return the set of renaming, module, and

satisfaction names in a given sequence of declarations T . Δabs(m,T ) and Δcon(m,T ) respectively

retrieve the set of abstract and concrete declarations contained in a module expression m with outer

context T . is-{required,abstract,axiom} are utilities that determine where a module-level

declaration d is respectively required, abstract, or an axiom.
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2.3.2.3 Satisfaction expressions

Satisfaction expressions establish a modeling relation between two module expressions, the source (on

the right-hand side of the relation) and the target (on the left-hand side of the relation). The source

module expression must be a valid concept expression (possibly with zero axioms). The target module

expression’s signature must subsume the source’s, and may be a valid concept expression or a valid

implementation expression.

A satisfaction expression’s target may be parameterized by a third implementation expression. In

that case, it is the union of the signatures of the target and of the parameter that must subsume the

signature of the source. Figure 2.10 gives the formal typing rules for satisfaction expressions. Figure 2.11

defines the ΔΣ (D) helper.

Well-formed satisfaction expressions s ok in π

WF-SatisfactionExpr

msource ok in Δpkg (π) mtarget ok in Δpkg (π) ∃σ, (concept σ = msource) ok in π
∃σ, (concept σ = mtarget) ok in π ∪ (implementation σ = mtarget) ok in π

ΔΣ (Δmod (signature(msource),Δpkg (π))) ⊂ ΔΣ (Δmod (signature(mtarget),Δpkg (π)))
(mtarget models msource) ok in π

WF-ParameterizedSatisfactionExpr

msource ok in Δpkg (π) mtarget ok in Δpkg (π) mparameter ok in Δpkg (π)
∃σ, (concept σ = msource) ok in π ∃σ, (implementation σ = mparameter) ok in π

∃σ, (concept σ = mtarget) ok in π ∪ (implementation σ = mtarget) ok in π
ΔΣ (Δmod (signature(msource),Δpkg (π))) ⊂ ΔΣ (Δmod (signature({use mtarget; use mparameter}),Δpkg (π)))

(mtarget with mparameter models msource) ok in π

Figure 2.10: Typing rules for satisfaction expressions.

Definition of helper environment ΔΣ (D)

ΔΣ (D) = [Δ′
Σ
(d) | d ∈ D]

Δ′
Σ
(require d) = Δ′

Σ
(d)

Δ′
Σ
(type τ) = τ

Δ′
Σ
(function f (x :τ) : τr) = f : τ, obs → τr

Δ′
Σ
(predicate p(x :τ)) = p : τ, obs → Pred

Δ′
Σ
(procedure p(ω x :τ)) = p : τ, ω → Unit

Δ′
Σ
(prototype = e) = Δ′

Σ
(prototype)

Δ′
Σ
(prototype guard g) = Δ′

Σ
(prototype)

Δ′
Σ
(prototype guard g = e) = Δ′

Σ
(prototype)

Δ′
Σ
(procedure p(ω x :τ) b) = p : τ, ω → Unit

Δ′
Σ
(procedure p(ω x :τ) guard g b) = p : τ, ω → Unit

Δ′
Σ
(axiom a(x :τ) b) = a : τ, obs → Unit

Figure 2.11: ΔΣ (D) converts a sequence of declarations into a unified environment containing the

corresponding types and prototypes. Prototypes retain variable mode information but omit guards.

Procedure and axiom prototypes are transformed into functional prototypes returning the Unit
type.
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2.3.2.4 Module expressions

Modules and satisfactions expressions are constructed using module expressions. The fundamental

module expression is the (anonymous) module definition, which consists of uses (i.e. “imports” of

existing modules) and declarations of types and operations. Magnolia does not allow recursion, and the

graph of dependencies of implemented operations on each other must therefore be a directed acyclic

graph (DAG). Module declarations at the top-level allow for module references, which retrieve the

(flattened) module expressions corresponding to a module name. Magnoliac also provides a number

of built-in endofunctions over module expressions, namely:

1. signature(m), which maps a module expression m to its signature;

2. external h p m, which assigns an external implementation provided in the file at path p in

the host programming language h for the (non-required) abstract declarations of module

expressions m;

3. m[. . .] andm[[. . .]], which allow for applying total and partial renamings overm’s declarations;

4. rewrite m1 with m2 n, which extracts an equational rewriting system from axioms in m2

and applies it n times on the body of each operation in m1. The rewriting rules are not applied

in a deterministic order, making this transformation more adapted for uses with confluent and

terminating rewriting systems.

5. implement f in m1 using m2, which allows for deriving in m1 a default implementation of

an operation f from a particular axiomatic description of f in m2.

These functions over modules are called module transformations in the rest of the text.

A flattened module expression is simply a set of module-level declarations, i.e. a module expression

in which all module transformations have been fully applied, and all module references have been

resolved. All module expressions are flattened during type checking. The signatures of two module

expressions are deemed equal if their flattened form corresponds to the exact same set of declarations

independently of partiality constraints, i.e., ignoring guards. We intentionally ignore guards when

adding declarations to our typing environments. Guards are unnecessary for developing typing rules

and complicate the presentation. In practice, if a single module expression contains two declarations

for a prototype p with distinct guards g1 and g2, the declarations are merged to produce a prototype p
with guard g1 ∧ g2.

Figure 2.12 describes well-formed module expressions in Magnolia. The rewrite and implement module

transformations are the latest experimental additions to magnoliac. They are presented in the text

above for the sake of completeness, but are not described in the typing rules. Paper 4 introduces these

two transformations and discusses them in more detail.
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Well-formed module expressions m ok in T

WF-ModuleRef

σ ∈ namesmodule (T )
σ ok in T

WF-ModuleExprExternal

m ok in T Δmod (m,T ) ⊂ Δabs (m,T )
external h p m ok in T

WF-ModuleExprSig

m ok in T

signature(m) ok in T

WF-ModuleExprRenameTotal

m ok in T [r] ok in T ∀d ∈ Δmod (m[r], T ), d ok in Δmod (m[r], T ) Δmod (m[r], T ) is a DAG
∀s ∈ sources(flatten-renamings(r, T )),

(s ∈ ΔΣ (Δmod (m,T ))) ∪ (∃(ω, τ, τr), s :τ, ω → τr ∈ ΔΣ (Δmod (m,T )))
m[r] ok in T

WF-ModuleExprRenamePartial

m ok in T [[r]] ok in T ∀d ∈ Δmod (m[[r]], T ), d ok in Δmod (m[[r]], T )
Δmod (m[[r]], T ) is a DAG

m[[r]] ok in T

WF-ModuleExprDef

U ok in T ∀d ∈ Δmod ({U ;D}, T ), d ok in Δmod ({U ;D}, T ) Δmod ({U ;D}, T ) is a DAG

{U ;D} ok in T

Figure 2.12: Typing rules for module expressions.

2.3.2.5 Module-level dependency expressions

The use and require dependency expressions allow for inlining a flattened module expressions in the

context of another module expression. Their main use is for composing several top-level modules

together within the same module expression. The use dependency expression inlines a flattened

module expression verbatim into its parent module expression, while the require dependency

expression transforms the flattened module expression into its corresponding signature, and marks all

the resulting declarations as required. This means that axioms are removed from the required module

expression, and that bodies are stripped from declarations that have one (e.g. function or procedure

definitions).

Well-formed dependency expressions u ok in T

WF-UseModule

m ok in T

use m ok in T

WF-RequireModule

m ok in T

require m ok in T

Figure 2.13: Typing rules for module-level dependency expressions.

2.3.2.6 Module-level declarations

Module expressions encapsulate the declarations of Magnolia types and operations. The four different

kinds of operations are:
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1. pure functions;
2. procedures, which wrap a sequence of statements and give access to a restricted form of side-

effects;

3. predicates, which are specific functions which return booleans;

4. axioms, which allow for specifying semantic properties of types and operations through

assertions.

Declaration modifiers Declarations are treated as either required, abstract, or concrete. A concrete

declaration provides an implementation for a type or operation, while an abstract declaration only

declares the existence of a type or operation. Required declarations are abstract declarations declared

using the require modifier. The only difference between required and abstract declarations is how

they behave under certain module transformations. For example, the external module transformation

transforms a module expression’s abstract but non-required declarations into concrete (external)

definitions, but does not modify required declarations.

Type system Magnolia has evolved to rely only on a rudimentary type system, straying away from

the original description of the language in Bagge’s dissertation [14]. As shown in Figure 2.1, types

can only be declared in Magnolia as opaque identifiers whose implementation must be provided

externally. Apart from user-defined types, magnoliac makes use of two built-in types—that can not

be accessed explicitly by the user:

1. Unit, the return type of procedures, statements, and thus of “effectful” computations. When

transpiling to C++, Unit is mapped to void;

2. Pred, the return type of predicates. The usual boolean functions are built-in, and can be used

to combine expressions of type Pred. When transpiling to C++, Pred is mapped to bool.

There is no way to state relationships between types apart from operations, and type checking does

not have to take into account either polymorphism, subtyping or coercions.

Mode system The readability and writability of variables in statements is controlled by the following

three modes: obs, upd, and out. An upd variable can be both read from and written to; an obs
variable can be read-from but not written to; an out variable can be written to but not (immediately)

read from.

The input parameters of predicates, functions and axioms are implicitly assigned the obs mode—

guaranteeing their immutability—while the input parameters to procedures must have their mode

explicitly provided. Modes enable procedures to have controlled side-effects. If a parameter to a

procedure has mode out, then it is guaranteed that all paths through the procedure will set its value.

Once an out variable has been assigned a value for the first time, it becomes upd and can thus be read

from.

Variables declared in statement blocks are out if they are not assigned a value, or upd otherwise.

Partiality As briefly explained previously, operations in Magnolia can be made partial using guards.
Unguarded operations are implicitly treated as being guarded by a call to the TRUE() built-in predicate.
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The typing rules for module-level declarations are presented in Figure 2.14. The module-level built-ins

are presented in Figure 2.15 and the const-env and update-env helpers are given in Figure 2.16.
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Well-formed module-level declarations and definitions d ok inD

WF-RequiredDecl

is-abstract(d) d ok inD

require d ok inD

WF-TypeDecl

type τ ok inD

WF-PrototypeDecl

prototype guard TRUE() ok inD

prototype ok inD

WF-GuardedFunctionDecl

ΔΣ (D) ⊢ τ ΔΣ (D) ⊢ τr distinct(x) ΔΣ (D); x : (τ, obs) ⊢ g : (Pred, obs)
function f (x : τ) : τr guard g ok inD

WF-GuardedPredicateDecl

ΔΣ (D) ⊢ τ distinct(x) ΔΣ (D); x : (τ, obs) ⊢ g : (Pred, obs)
predicate p(x : τ) guard g ok inD

WF-GuardedProcedureDecl

ΔΣ (D) ⊢ τ distinct(x) ΔΣ (D); const-env(x : (τ, ω)) ⊢ g : (Pred, obs)
procedure p(ω x : τ) guard g ok inD

WF-FunctionDef

function f (x : τ) : τr ok inD ΔΣ (D); x : (τ, obs) ⊢ e : (τr , obs)
function f (x : τ) : τr = e ok inD

WF-PredicateDef

predicate p(x : τ) ok inD ΔΣ (D); x : (τ, obs) ⊢ e : (Pred, obs)
predicate p(x : τ) = e ok inD

WF-ProcedureDef

procedure p(ω x : τ) ok inD ΔΣ (D); x : (τ, ω) ⊢ b ok

(ω = out) ⇒ (v, τ, upd) ∈ update-env(Δ, ∅, x : (τ, ω), b)
procedure p(ω x : τ) b ok inD

WF-GuardedFunctionalDef

prototype = e ok inD prototype guard g ok inD

prototype guard g = e ok inD

WF-GuardedProcedureDef

procedure p(ω x :τ) b ok inD procedure p(ω x :τ) guard g ok inD

procedure p(ω x :τ) guard g b ok inD

WF-AxiomDef

procedure a(obs x :τ) ok inD ΔΣ (D); x : (τ, obs) ⊢ b ok

axiom a(x :τ) b ok inD

Figure 2.14: Typing rules for module-level declarations. We refer to the prototype production rule

from Figure 2.1 in the WF-PrototypeDecl and WF-GuardedFunctionalDef typing rules for the purpose

of conciseness. The well-formedness rules of module expressions in Figure 2.12 enforce the DAG

property of the graph of dependencies of implemented operations on each other, and we do not need

to check that it holds here.
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Predefined types and operations Δ ⊢ d

WF-PredType Δ ⊢ Pred WF-UnitType Δ ⊢ Unit

T-True Δ ⊢ TRUE :→ Pred T-False Δ ⊢ FALSE :→ Pred

T-Or Δ ⊢ _||_ : (Pred, obs) × (Pred, obs) → Pred T-And Δ ⊢ _&&_ : (Pred, obs) × (Pred, obs) → Pred

T-Implies

Δ ⊢ _=>_ : (Pred, obs) × (Pred, obs) → Pred
T-Equiv

Δ ⊢ _<=>_ : (Pred, obs) × (Pred, obs) → Pred

T-Equal

Δ ⊢ τ
Δ ⊢ _==_ : (τ, obs) × (τ, obs) → Pred

T-Nequal

Δ ⊢ τ
Δ ⊢ _!=_ : (τ, obs) × (τ, obs) → Pred

T-Not Δ ⊢ !_ : (Pred, obs) → Pred

Figure 2.15: Predefined types and operations in Magnolia. Δ is the typing environment containing

the locally available types and operations.
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Definition of const-env(Γ)

const-env(Γ) = [const-var(v) | v ∈ Γ] const-var((v, τ, obs)) = (v, τ, obs)

const-var((v, τ, upd)) = (v, τ, obs) const-var((v, τ, out)) = (v, τ, unusable)

Definition of local-env(Δ, Γ, s) and update-env(Δ, Γg, Γl, s)

local-env(Δ, Γg, s) = update-env(Δ, Γg, ∅, s)
update-env(Δ, Γg, Γl, ∅) = Γl

update-env(Δ, Γg, Γl, call p(e); s) = update-env(Δ, Γg, Γ′
l, s)

where Γ′
l = [(v, τ, upd if v ∈ e ∩ (v, τ, out) ∈ Γl else ω)

| (v, τ, ω) ∈ Γl]
update-env(Δ, Γg, Γl, {s0}; s1) = update-env(Δ, Γg, update-env(Δ, Γg, Γl, s0), s1)
update-env(Δ, Γg, Γl, var v :τ; s) = update-env(Δ, Γg, (Γl, (v, τ, out)), s)
update-env(Δ, Γg, Γl, var v :τ = e; s) = update-env(Δ, Γg, (Γl, (v, τ, upd)), s)
update-env(Δ, Γg, Γl, var v = e; s) = update-env(Δ, Γg, (Γl, (v, τ, upd)), s)

where Δ; Γg ∥ Γl ⊢ e :τ
update-env(Δ, Γg, Γl, v′ = e; s) = update-env(Δ, Γg, [(v, τ, upd if v = v′ else ω) | (v, τ, ω) ∈ Γl], s)
update-env(Δ, Γg, Γl, if e then st else sf ; s) = update-env(Δ, Γg, update-env(Δ, Γg, Γl, st), s)
update-env(Δ, Γg, Γl, assert e; s) = update-env(Δ, Γg, Γl, s)
update-env(Δ, Γg, Γl, value e; s) = update-env(Δ, Γg, Γl, s)
update-env(Δ, Γg, Γl, skip; s) = update-env(Δ, Γg, Γl, s)

Figure 2.16: The const-env(Γ) helper function transforms the input variable environment

into the corresponding variable environment where all readable variables are obs and all unset

variables are unusable. local-env(Δ, Γ, s) traverses a sequence of statements and returns the

local environment that this sequence creates. This helper functions works correctly under the

assumption that the judgment Δ; const-env(Γ) ⊢ {s} holds. This implies that any variable update

within the sequence of statements s occurs on a variable defined within the sequence of statements.

When calling update-envh directly instead of local-env, one can pre-define an existing local

environment—thus allowing to track updates made throughout a block of statement to that pre-

populated environment.
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2.3.2.7 Functional expressions

Expressions constitute the bodies of functions and predicates. They are free of side-effects—i.e. they

are pure. The different kinds of expressions are:

1. variable references;
2. function calls, which may be accompanied by a type annotation in order to disambiguate calls

to functions with overloads where only the return type is different;

3. conditional (if-then-else) expressions;
4. value blocks, which allow building up an expression from a block of statements terminated by a

single value statement. Value blocks capture a “frozen” version of the variable context in which

they appear, i.e., one in which all readable entities (constants with mode obs, and variables

with mode upd) are considered to have mode obs, and all existing but non-readable variables

(variables with mode out) are unusable but remain in scope. Freezing the external variable

context passed to a value block ensures that the expression remains free of side-effects. Retaining

non-readable values in scope ensures that the value block does not shadow them—shadowing

variables is forbidden in magnoliac’s flavour of Magnolia.

Figure 2.17 presents the typing rules for Magnolia’s functional expressions.

Typing rules for expressions Δ; Γ ⊢ e : (τ, ω)

T-VarRef

x : (τ, ω) ∈ Γ

Δ; Γ ⊢ x : (τ, ω)

T-FunctionCall

∃!τr , (f : (τ, obs) → τr) ∈ Δ ∃ω ∈ {obs, upd},Δ; Γ ⊢ e : (τ, ω)
Δ; Γ ⊢ f (e) : (τr , obs)

T-FunctionCallAnn

(f : (τ, obs) → τr) ∈ Δ ∃ω ∈ {obs, upd},Δ; Γ ⊢ e : (τ, ω)
Δ; Γ ⊢ (f (e) :τr) : (τr , obs)

T-IfThenElse

∃ωc ∈ {obs, upd},Δ; Γ ⊢ ec : (Pred, ωc)
∃ωt ∈ {obs, upd},Δ; Γ ⊢ et : (τ, ωt) ∃ωf ∈ {obs, upd},Δ; Γ ⊢ ef : (τ, ωf)

Δ; Γ ⊢ (if ec then et else ef) : (τ, obs)
T-ValueBlock

�e′, (value e′) ∈ s Δ; const-env(Γ) ⊢ {s}
∃ω ∈ {obs, upd},Δ; const-env(Γ) ∥ local-env(Δ, Γ, s) ⊢ e : (τ, ω)

Δ; Γ ⊢ ({s; value e; }) : (τ, obs)

Figure 2.17: Magnolia’s typing rules at the expression level. Γ is the typing environment containing

the type and mode of existing local variables, while Δ is the typing environment containing the

available types and operations.
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2.3.2.8 Statements

Magnolia allows programming in an imperative fashion using statement blocks (sequences of

statements). There are two flavours of statement blocks: the so-called “value” block, described

previously in the discussion on functional expressions, and the “effectful” block, which does not

return a value but may modify writeable variables declared in an outer scope. Effectful statement

blocks give Magnolia a form of side-effects controlled through variable modes. Unlike the value block,

the effectful statement block is itself a statement. The body of a procedure or of an axiom is always an

effectful statement block.

Apart from an effectful statement block, a statement can be one of the following:

1. a procedure call;

2. a variable declaration, which allows for declaring new (typed) variables with mode out. Note

that once a variable is assigned a value, its mode is automatically set to upd;

3. a variable definition, which allows for declaring a variable and assigning it a value at the same

time. Variable definitions may be given an explicit type;

4. a variable assignment, which assigns a new value to an already existing variable. Variable

assignment can be thought of as a call to a procedure _=_(upd var : T, obs val : T ) built

in for every type T ;

5. an effectful conditional statement. This is the effectful counterpart of the conditional expression.

For simplicity, we do not allow branches of a conditional statement to affect the existing variable

environment in different ways. More concretely, this means that all the pre-existing variables

must have the same mode after the conditional statement, regardless of which branch is taken;

6. an assertion, which records a predicate expected to hold. Axioms use assertions on universally

quantified variables to express semantic constraints on types and operations. The implement
and rewrite module transformations both leverage equational assertions to respectively provide

a default implementation for a function, and rewrite terms;

7. a value statement, which serves only to return a value from inside value blocks. A value block is

always terminated by a single value statement. Conversely, a value statement may only exist as

the last statement of a value block;

8. skip statements, which are no-ops.

Figure 2.18 formalizes what it means for a statement to be well-formed.
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Well-formed statements Δ; Γ ⊢ s ok

WF-ProcedureCall

(p : (τ, ω) → Unit) ∈ Δ ∃ω′ ∈ {ω, upd},Δ; Γ ⊢ e : (τ, ω′)
Δ; Γ ⊢ call p(e) ok

WF-EffectfulBlock

�(v, e, τ), (s0 = (var v :τ)) ∪ (s0 = (var v = e)) ∪ (s0 = (var v :τ = e)) ∪ (s0 = (v = e)) ∪ (s0 = value e))
Δ; Γ ⊢ s0 ok Δ; Γ ⊢ {s} ok

Δ; Γ ⊢ {s0; s} ok

WF-VarDecl

�e, (value e) ∈ s Δ ⊢ τ �(τ′, ω′), v : (τ′, ω′) ∈ Γ Δ; Γ, v : (τ, out) ⊢ {s}
Δ; Γ ⊢ {var v :τ; s} ok

WF-VarDef

�e′, (value e′) ∈ s �(τ′, ω′), v : (τ′, ω′) ∈ Γ

∃τ∃ω ∈ {obs, upd},Δ ⊢ τ ∩ Δ; Γ ⊢ e : (τ, ω) ∩ Δ; Γ, v : (τ, upd) ⊢ {s}
Δ; Γ ⊢ {var v = e; s} ok

WF-VarTypedDef

�e′, (value e′) ∈ s �(τ′, ω′), v : (τ′, ω′) ∈ Γ ∃ω ∈ {obs, upd},Δ; Γ ⊢ hint(τ, e) : (τ, ω) Δ; Γ, v : (τ, upd) ⊢ {s}
Δ; Γ ⊢ {var v :τ = e; s} ok

WF-VarAssign

∃τ∃ωv ∈ {out, upd}∃ωe ∈ {obs, upd},
Δ ⊢ τ ∩ Γ ⊢ v : (τ, ωv) ∩ Δ; Γ ⊢ e : (τ, ωe) ∩ Δ; Γ \ {v : (τ, ωv)}, v : (τ, upd) ⊢ {s}

Δ; Γ ⊢ {v = e; s} ok

WF-EffectfulIfThenElse

∃ωc ∈ {obs, upd},Δ; Γ ⊢ ec : (Pred, ωc) Δ; Γ ⊢ st ok Δ; Γ ⊢ sf ok
Δ; [v : (τ, ω′) | (v, τ, ω′) ∈ update-env(Δ, ∅, Γ, st), (∃ω, v : (τ, ω) ∈ Γ)] ⊢ {s}

∀v : (τ, out) ∈ Γ,∃ω ∈ {out, upd}, (v, τ, ω) ∈ update-env(Δ, ∅, Γ, st) ∩ (v, τ, ω) ∈ update-env(Δ, ∅, Γ, sf )
Δ; Γ ⊢ {if ec then st else sf; s} ok

WF-Assert

∃ω ∈ {obs, upd},Δ; Γ ⊢ e : (Pred, ω)
Δ; Γ ⊢ assert e ok

WF-Value

∃τ∃ω ∈ {obs, upd},Δ ⊢ τ ∩ Δ; Γ ⊢ e : (τ, ω)
Δ; Γ ⊢ value e ok

WF-Skip

Δ; Γ ⊢ skip ok

Definition of hint(τ, e)

hint(τ, f (e)) = f (e) :τ hint(τ, e′ | e′ ≠ f (e)) = e′

Figure 2.18: Magnolia’s typing rules at the statement level. Γ is the typing environment containing

the type and mode of existing local variables, and Δ is the typing environment containing the available

types and operations. Variable declaration, definition, and assignment only make sense in the context

of blocks which affects the presentation of these particular rules. In practice, statements are always in

a block.
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2.4 Notes on the Implementation of magnoliac

The magnoliac compiler is implemented in Haskell. This choice is motivated partly by features of

the language itself (e.g. algebraic data types and pattern matching), partly by existing tooling (e.g.

parser combinator libraries), and partly by the host of published compiler-related research that uses

Haskell. The implementation of magnoliac draws inspiration from several other compiler codebases,

including that of Futhark [? ], Dex [? ], and the Glasgow Haskell Compiler (GHC) itself.

2.4.1 Compilation Phases and Passes

The compiler pipeline consists of four main phases (with corresponding passes): dependency analysis,
parsing, checking, and code generation.

Dependency analysis Let the main file for a call to the compiler be the source file containing the

package whose program definitions the user wants to generate code for. The dependency analysis

pass takes in an input file path corresponding to the main file for the compilation run, and tries

to produce a directed acyclic graph (DAG) containing all the dependencies for the corresponding

package. We achieve this by parsing only the package header in each file once, and recursively reading

new files as needed. Compilation fails if a cycle is detected.

Parsing Parsing is implemented using Megaparsec, a popular Haskell parser combinator library [? ].

For each package identified as necessary by the dependency analysis pass, we produce a corresponding

abstract syntax tree (AST) by parsing the corresponding file—the parsed AST. Each node in the parsed

AST is annotated with its source location within the file for future error reporting.

Checking The checking pass attempts to construct a checked AST from each parsed AST. The

pass checks that each package follows the typing and consistency rules outlined earlier in this chaper.

Module transformations are applied and top-level references are resolved during the checking phase.

All the top-level constructs in the checked AST (i.e. modules, named renamings, and satisfaction

relations) are completely inlined. The package itself is also self-contained, i.e., all the modules defined

in other packages that are necessary for checking the package are locally reproduced. Nodes in the

checked AST are annotated with relevant information derived during the checking phase, e.g. a type

for functional expressions, or whether a top-level declaration is locally defined or imported from

another package, or all the locations where a given module-level declaration has been defined following

uses, requires, and renamings.

Code generation Code generation transforms each checked program that was declared in the

main file of the compilation run into a host language-specific AST. The resulting AST can later be

pretty printed as source code in the chosen language. Three such languages are currently available:

C++, Python, and CUDA—the last only in an experimental branch.

The phases above are executed in order, and the compiler does not move to the next phase if one

or more errors have been encountered while processing any of the inputs in the current phase.
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Listing 2.3: The monad stack used throughout the compiler passes in magnoliac. While the

declaration of MgMonadT is generic, MgMonad is its only instantiation currently used in practice.

In MgMonad, the exception type is the unit type, and compiler errors are accumulated in the state

of type Set Err. This allows us to throw exceptions that we can recover from at any point in the

compilation pipeline and to accumulate the encountered errors for reporting at the end of the ongoing

compilation pass. The provided environment of type [Name] is used to store the names of the parent

scopes (e.g. the parent package and module names) in order to construct helpful error messages.

newtype MgMonadT e r s m a =
MgMonadT (ExceptT e (ReaderT r (StateT s m)) a)
d e r i v i n g (Functor , Applicative , Monad)

i n s t a n c e MonadIO m => MonadIO (MgMonadT e r s m) where
liftIO = MgMonadT . liftIO

type MgMonad = MgMonadT () [Name] (Set Err) IO

Within a particular phase of compilation, errors are recovered from wherever possible. For example,

encountering an error while checking the consistency of a module does not prevent us from checking

the consistency of another independent module. Although we know compilation will fail, we aggregate

as many useful errors as possible before returning. Listing 2.3 shows the monad stack used to achieve

that throughout the compiler.

2.4.2 Definition of the AST

As mentioned above, the parsed AST and the checked AST both represent Magnolia code—but are

not quite the same. First and foremost, the ASTs are annotated with different kinds of information—

source information for the parsed AST, but also additional data for the checked AST. Second, the

checked AST is more constrained. E.g., it no longer contains any module reference—all top-level

declarations are flattened.

The most natural solution for defining these two ASTs is simply to define two different data types

for each nesting level (package, module, . . . ). This is frustrating though: since the data types are very

similar, the definitions are nearly identical, and utility functions are harder to reuse. The approach

does not scale well either: adding more phases with slightly different representations or different

annotations causes further duplication.

The problem of needing several similar variants of a given AST is known as the “tree-decoration
problem”. The problem is solved in magnoliac similarly to how it is solved in GHC—as described in

the excellent “Trees that Grow” paper [? ]. The ASTs in magnoliac are defined using a single data type

for each nesting level, and using two of the techniques described in the paper: phase-indexed fields,
and alternating data types.

Phase-indexed fields A phase-indexed field is a field within a data type that is of arbitrarily different

types during different phases of the compilation. Phase-indexed fields allow changing the type of

information associated with nodes throughout the compilation, but also allows enabling or disabling
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arbitrary constructors. Phase-indexed fields are the central piece to enabling the reuse of the AST

data type throughout the compilation phases. Such fields are implemented using type families [32].

Listing 2.4 shows one use of a phase-indexed field in Magnolia that ensures that renamings are always

fully inlined in the checked AST.

Listing 2.4: Definition of the XRef type family. PhParse and PhCheck are used as phantom types

corresponding respectively to the parsing phase and to the checking phase of compilation. The

MRenaming’ data type describes a renaming. A renaming may be defined inline, or reference a named

renaming. Because XRef PhCheck returns Void, it is impossible to (sanely) construct a checked

MRenaming’ that is a reference to a named renaming. The checked AST thus enjoys the additional

static guarantee that no such unresolved reference remains compared to the parsed AST.

-- data FullyQualifiedName = ...
-- data InlineRenaming = ...

d a t a PhParse
d a t a PhCheck

type family XRef p where
XRef PhParse = FullyQualifiedName
XRef PhCheck = Void

d a t a MRenaming ’ p = InlineRenaming InlineRenaming
| RefRenaming (XRef p)

Alternating data types In order to provide relevant annotations for each node in the ASTs (e.g.,

the source information for each node in the parsed AST), each nesting level in the AST has two type

definitions: one for the data type itself, and one for the annotated version of the data type. Listing 2.5

shows an excerpt of the code.

Listing 2.5: Definition of the Ann annotation data type and example use to annotate the MModule’
data type. The e type parameter corresponds to a phase-indexed node type to annotate, and the p
type parameter is a phantom type corresponding to a compilation phase. The type of the annotation

is itself a phase-indexed field with type XAnn p e. By making the annotation type a phase-indexed

type instance of the XAnn type family, we are free to arbitrarily change the type of the annotation as

needed throughout the compilation pipeline.

type family XAnn p (e :: * -> *)

d a t a Ann p e = Ann { _ann :: XAnn p e
, _elem :: e p
}

type MModule p = Ann p MModule ’
d a t a MModule ’ p = ...

Using a single definition for the AST has its own drawbacks. Namely, it makes compilation slower
1
,

1
Haskell type families are painfully slow, see the longstanding issue at https://gitlab.haskell.org/ghc/ghc

/-/issues/8095.

https://gitlab.haskell.org/ghc/ghc/-/issues/8095.
https://gitlab.haskell.org/ghc/ghc/-/issues/8095.
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makes the code somewhat more complex, and forces us to write a bit of code to handle unavailable

constructors. All in all, the trade-off seems worth it here. Such a design makes the AST reusable and

extensible without duplication—and making magnoliac easy to reuse and extend is one of our design

goals.
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Abstract

Context Generic programming, as defined by Stepanov, is a methodology for writing

efficient and reusable algorithms by considering only the required properties of their

underlying data types and operations. Generic programming has proven to be an effective

means of constructing libraries of reusable software components in languages that

support it. Generics-related language design choices play a major role in how conducive

generic programming is in practice.

Inquiry Several mainstream programming languages (e.g. Java and C++) were first

created without generics; features to support generic programming were added later,

gradually. Much of the existing literature on supporting generic programming focuses

thus on retrofitting generic programming into existing languages and identifying related

implementation challenges. Is the programming experience significantly better, or

different when programming with a language designed for generic programming without

limitations from prior language design choices?

Approach We examine Magnolia, a language designed to embody generic programming.

Magnolia is representative of an approach to language design rooted in algebraic

specifications. We repeat a well-known experiment, where we put Magnolia’s generic

1
Benjamin Chetioui, Jaakko Järvi, and Magne Haveraaen. Revisiting language support for generic programming:

When genericity is a core design goal. The Art, Science, and Engineering of Programming, 7(2), oct 2022.

doi:10.22152/programming-journal.org/2023/7/4

https://doi.org/10.22152/programming-journal.org/2023/7/4
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programming facilities under scrutiny by implementing a subset of the Boost Graph

Library, and reflect on our development experience.

Knowledge We discover that the idioms identified as key features for supporting

Stepanov-style generic programming in the previous studies and work on the topic do

not tell a full story. We clarify which of them are more of a means to an end, rather than

fundamental features for supporting generic programming. Based on the development

experience with Magnolia, we identify variadics as an additional key feature for generic

programming and point out limitations and challenges of genericity by property.

Grounding Our work uses a well-known framework for evaluating the generic progra-

mming facilities of a language from the literature to evaluate the algebraic approach

through Magnolia, and we draw comparisons with well-known programming languages.

Importance This work gives a fresh perspective on generic programming, and clarifies

what are fundamental language properties and their trade-offs when considering

supporting Stepanov-style generic programming. The understanding of how to set

the ground for generic programming will inform future language design.

1.1 Introduction

It is routine in programming to parameterize algorithms and data structures by type to make them

reusable in different contexts. The mechanisms for implementing generic code, however, vary from

one language to the other. These details matter: Garcia et al. [61] evaluated and compared the

level of support for generic programming in several programming languages (C++, SML, OCaml,

Haskell, Eiffel, Java, C#, and Cecil), and showed that many language design choices related to generics

significantly influence how conducive that language is in practice to generic programming. This

work has had an influence on the design of programming languages (see, e.g., C++’s Concepts [76],

Haskell’s associated types [32], and Siek and Lumsdaine’s idealized G language [159; 163] for generic

programming).

Generic features are now common features of most widely used languages, and for many of them, these

features were an afterthought. The list of such languages has kept growing—examples of languages

with recent or planned generic features include Fortran [91], Go [77], ECMAScript, TypeScript, and

FlowType. Retrofitting tends to lead to compromises, which raises the questions whether the set of

features for generic programming would look the same for languages that incorporate support for

generic programming as part of their initial design, and how such potentially different designs support

generic programming in practice. This paper sheds light on these questions by examining language

designs rooted in algebraic specification. In particular, we conduct a case study and analyse in details

the features and programmability of one language representative of the approach, and discuss the

findings in the general context of languages that follow the same algebraic design principles. The

goal is to inform future language designs, so that new languages could support generic programming

without pitfalls identified by Garcia et al.

Interpretations of generic programming vary depending on what kind of parameterization a

programming language supports. Gibbons gives a taxonomy for some interpretations of genericity [62]

which we reuse here. Programs parameterized by type constructors give rise to genericity by shape,

through datatype-generic programming (also called polytypism) [11; 62]. This is the interpretation

chosen by, e.g., Generic Haskell [93]. In the object-oriented world, generic programming refers
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Generic programming is a sub-discipline of computer science that deals with finding abstract

representations of efficient algorithms, data structures, and other software concepts, and with

their systematic organization. The goal of generic programming is to express algorithms and

data structures in a broadly adaptable, interoperable form that allows their direct use in software

construction. Key ideas include:

• Expressing algorithms with minimal assumptions about data abstractions, and vice versa, thus

making them as interoperable as possible.

• Lifting of a concrete algorithm to as general a level as possible without losing efficiency; i.e., the

most abstract form such that when specialized to the concrete case, the result is just as efficient as

the original algorithm.

• When the result of lifting is not general enough to cover all uses of an algorithm, additionally

providing a more general form, but ensuring that the most efficient specialized form is automatically

chosen when applicable.

• Providing more than one generic algorithm for the same purpose and at the same level of

abstraction, when none dominates the others in efficiency for all inputs. This introduces the

necessity to provide sufficiently precise characterizations of the domain for which each algorithm

is the most efficient.

Figure 1.1: Definition of generic programming from Jazayeri, Musser, and Loos [102].

primarily to generics or parametric polymorphism [29; 97], that is genericity by type. We add qualifiers

such as bounded or constrained to these terms, and mean roughly the same things. Algebraic

specifications are the basis for another approach to generic programming called parameterized
programming. Parameterized programming has been concretized prominently in the OBJ family of

languages, e.g. in OBJ2 [59], OBJ3 [70], CafeOBJ [50], and Maude [43; 45]. C++ concepts (as proposed

for C++11), which describe syntactic and semantic requirements on data structures and algorithms [76],

also descend from this approach based on algebraic specifications. Concepts, as implemented in C++20,

only support syntactic requirements: we talk about genericity by structure. In the fully-fledged version

of concepts, when both syntactic and semantic requirements are supported, we talk about genericity
by property. C++ concepts were born out of Stepanov’s work on generic programming [49; 104]. This

paper, following Garcia et al., takes the notion of generic programming as introduced by Musser

and Stepanov in their seminal work in 1988 [137]. Figure 1.1 reproduces their structured definition of

generic programming, taken from Jazayeri, Musser, and Loos [102].

We employ Garcia et al.’s framework for evaluating languages for generic programming to assess the

approach based on algebraic specifications through an experiment with the Magnolia programming

language [14]. This research language was first developed more than a decade ago, and is now again

under active development [35]. We repeat Garcia et al.’s experiment of implementing a subset of

the Boost Graph Library [164] (BGL), rich in generic definitions, to put the generic programming

facilities of a language under rigorous scrutiny.

Magnolia is designed as an embodiment of a language for Stepanov-style generic programming.

Magnolia’s main type of genericity is thus genericity by property, as the language allows the

specifications of algebraic signatures along with semantic requirements on their behavior, i.e., concepts.

Magnolia does not offer any primitive type (beyond predicates), and it is designed to be parameterized

by a host programming language and data structures implemented in that language. In the style

of Gibbons’s taxonomy, we coin the term genericity by host language to refer to the type of generic

programming enabled by this axis of parameterization. One can implement composite operations in



1

44 Revisiting Language Support for Generic Programming

Magnolia—all base types and their operations, even loop structures, come from libraries written in

the host language. Magnolia has a transpiler architecture, where the boundary between the language

(Magnolia) and the base library (written in the host language) is not predefined, but rather the

programmer can freely place it where convenient.

Garcia et al.’s work [61] to implement the same generic library in a variety of languages led the

authors to identify several language properties that are useful and/or necessary for effective generic

programming. Siek and Lumsdaine, in the context of developing the G programming language,

extended this set of properties [163]. These sets of properties served as the language evaluation

framework in the above two works. We adopt this framework on the one hand to assess Magnolia’s

support for generic programming and on the other hand to relate its somewhat unorthodox language

design to (more) mainstream languages. The listing of the identified properties, with our additions, is

shown in Figure 1.2.

Following the recipe of the prior works, we implement a fragment of a generic graph library modeled

after the BGL, in Magnolia, and analyze the result with regards to each identified property. This

experiment allows us to extract several insights into generic programming, which we discuss in the

paper. We highlight two particularly noteworthy aspects of the Magnolia BGL fragment. First, we

implement both C++ and Python backend libraries. The same generic Magnolia code that captures

the essence of graph algorithms can then be transpiled to either of these languages. We achieve an

additional level of genericity, i.e., genericity by host language. Second, we show how a (seemingly)

sequential generic algorithm can be transformed into one that is parallel, by picking appropriate

backend data structures. This is achieved by abstracting the iteration mechanism. Magnolia does

not offer any built-in looping constructs, and repetitions are thus necessarily expressed as generic

abstractions.

The paper is structured as follows. Section 1.2 describes the landscape of languages designed for generic

programming based on algebraic specifications, and explains how the approach is concretized, first in

Maude and then in Magnolia. Section 1.3 presents our small graph library and discusses its Magnolia

implementation. Section 1.4 situates Magnolia within the landscape of generic languages. It also makes

connections and comparisons with other languages, and discusses related work. Section 1.5 discusses

the performance of our implementation. Section 1.6 reflects on our approach and the insights we

gained by developing the graph library. All the code discussed in this paper is made available [35].

1.2 Languages Designed for Generic Programming:
The Approach of Algebraic Specifications

Algebraic specifications are at the core of Stepanov’s work on generic programming [49; 104; 137; 165].

Highly influential early work in the field is Goguen’s parameterized programming that emphasizes code

reuse and modularity [60; 63]. Siek characterizes parameterized programming as similar to Stepanov’s

notion of generic programming, but without the same emphasis on efficiency [159]. Parameterized

programming thus also aims at expressing algorithms in their most general form, making both their

syntactic and semantic requirements explicit, and well organized.
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1.2.1 Algebraic Specifications and Maude

Algebraic specifications and Goguen and Burstall’s theory of institutions [67] have guided the design

of the OBJ language family [71] (OBJ2, OBJ3, CafeOBJ, Maude. . . ). These languages provide extensive

support for parameterized programming by design. OBJ2 and OBJ3 are both implementations of the

OBJ logical programming language that differ in their operational semantics [70]. Maude incorporates

most features of OBJ3 and significantly expands the capabilities of OBJ2 and OBJ3 for parameterized

programming. Maude and CafeOBJ are still under active development. We describe below the

general design of languages intended to support generic programming using algebraic specifications,

and explain how it is concretized in Maude. Maude is based on rewriting logic [42; 66], and uses

membership equational logic as its underlying equational logic. Our discussion only touches upon the

fragment of Maude related to membership equational logic, where Maude’s support for parameterized

programming is concretized.

The general approach relies on a bilevel module system, with modules that allow for specifying

generic APIs on the one hand and modules that allow for writing concrete programs on the other

hand [69]. Modules of the same kind may be composed, and program modules can be parameterized

by specification modules. Specifications consist of an algebraic signature defining sorts and (total and

partial) operations, along with semantic requirements on their behaviour called axioms. Satisfaction

relations can be expressed which describe how a program (or a specification) satisfies the requirements

of a given specification.

Specifications are given in Maude through functional theories—Goguen introduced the notion of

types as theories [65]. Functional theories allow expressing semantic requirements using equations
and conditional equations. In addition, Maude allows the specification of subsorting relations
along with membership axioms. This approach allows flexible control of partiality and declaring

relationships between types, e.g., natural numbers and integers. The choice of implementing partiality

using subsorting has consequences on other language features. For example, it poses restrictions

on overloading and thus also on the ability to compose two arbitrary theories—see Listing 2 (in

Appendix 3.3) for an example. Note the similarity of this approach to refinement types—where the

refined type {t : T | P} is the subset of type T for which the formula P holds [57; 73]. Refinement

types are closely related to subtyping.

Maude’s functional modules allow for writing programs using the same constructs as functional

theories—where equations and conditional equations define functions and data types in lieu of

functional theories’ semantic requirements, and where the rewriting system engendered by these

equations must be confluent and terminating. The semantics of a functional module in Maude is the

initial algebra defined by the module’s equations, and evaluation is performed using an equational

rewriting engine. Functional modules can be parameterized by functional theories: we speak of

parameterized functional modules. Maude programs can be metarepresented as data and manipulated

to produce new programs. This powerful mechanism of reflection allows generating so-called

dependent parameterized modules such as n-tuples containing n sorts and n projection functions [45,

Section 21.3.1]. Maude’s built-in types are efficiently implemented in C++. Contrarily to the previous

OBJ2 and OBJ3, Maude does not allow the user to implement custom primitive types in an external

language.

Satisfaction relations in Maude are stated through views. Every sort (respectively function) in the

view’s source theory must be mapped (renamed) to a corresponding sort (respectively function) in

the view’s target module, and the mappings must preserve the subsorting structure of the source
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theory in the target module. It is also possible to implement functions on the fly to resolve signature

mismatches.

1.2.2 Magnolia

As alluded to above, the Magnolia programming language is designed for Stepanov-style generic

programming—i.e. parameterized programming with an added emphasis on efficiency. The language

takes the same general approach based on algebraic specifications as described above, and its module

system is likewise based on Goguen and Burstall’s theory of institutions.

Listing 1.1 shows uses of the different module types. A signature allows defining types and

operations. A concept is a signature augmented with axioms that restrict the properties of the

types and operations. A concept serves the same purpose as a functional theory in Maude, and

the signature and concept modules constitute the specification layer of the module system. An

implementation allows the same declarations as a signature , but also the definition of generic

operation implementations; it is the equivalent of a parameterized functional module in Maude. A

program is a specific kind of implementation in which all the specified operations and types are

matched with (non-generic) concrete implementations; either Magnolia code that has a concrete

implementation or an implementation in the base library in the host language. The implementation
and program modules constitute the program layer of the module system. Constructs analogous to

Maude’s metaprogramming facilities are under investigation for Magnolia through Syntactic Theory

Functors (STFs) [87] but the Magnolia compiler supports only specific instances of STFs at the

moment [39].

Types (sorts) in Magnolia are opaque identifiers. One cannot explicitly parameterize them, nor

can one define relations such as subtyping relations between them. Operations can be functions,

procedures, or predicate s. Procedure calls are prefixed with the call keyword, while function

calls follow the usual uncurried call syntax. Predicates are treated as functions with a built-

in, non-reimplementable return type. Magnolia’s approach to partiality is based on guarded

algebras [88]: an operation can be guarded by a predicate, which then acts as a precondition. In

addition to their types, a procedure associates modes to its arguments: obs (read-only), upd (can

be read and written to), and out (write-only, and must be written to) [18]. ExampleProgram
in Listing 1.1 shows equivalent implementations of a multiplication by three as a procedure
(timesThreeUpdateRef) and as a function (timesThree). In the example’s program, the int
type and add function are externally defined in Python and come from PyConcreteSemigroup.

The line use Magma[ T => int, bop => add ] applies a renaming function to the content of

the Magma signature and brings it into scope. The renaming maps T to a new name int, and bop
to a new name add. It is assumed that the primitives implemented in the host language do not have

side-effects, except for the modification of arguments to procedures where the argument mode is out
or upd.

A satisfaction allows defining a modeling relation between an implementation and a concept; or

between two concepts—it is the equivalent of a view in Maude. Signature mismatches are resolved

through the renaming mechanism.

Magnolia semantics are tightly coupled to abstracting over hardware features: primitive types and

operations may directly represent characteristics of the underlying hardware architecture, such as

instruction sets, memory layout, etc. This enables Magnolia code to run efficiently on a variety of
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Listing 1.1: The main Magnolia building blocks.

s i g n a t u r e Magma = {
type T;
f u n c t i o n bop(t1: T, t2: T): T;

}

c o n c e p t Semigroup = {
use Magma;
axiom bopIsAssociative(t1: T, t2: T, t3: T) {

a s s e r t bop(t1, bop(t2 , t3)) == bop(bop(t1, t2), t3);
}

}

implementat ion PyConcreteSemigroup =
e x t e r n a l Python lib.int_impl {

use Magma[ T => int , bop => add ];
use Magma[ T => int , bop => mul ];

}

program ExampleProgram = {
use PyConcreteSemigroup;
procedure timesThreeUpdateRef(upd i: int) {

i = add(add(i, i), i);
}

f u n c t i o n timesThree(i: int): int {
var mutable_i = i;
c a l l timesThreeUpdateRef(mutable_i );
v a l u e mutable_i;

}
}

s a t i s f a c t i o n ExampleProgramHasAddSemigroup =
ExampleProgram models Semigroup[ T => int , bop => add ];

s a t i s f a c t i o n ExampleProgramHasMulSemigroup =
ExampleProgram models Semigroup[ T => int , bop => mul ];
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hardware, and to explore software for high-performance computing (HPC) [39]—making it suitable

to address also the efficiency aspect of generic programming. This feature enables the user to utilize

features of new hardware, e.g., posit numbers [80] by writing code directly in the targeted host

language.

The notion of concepts, around which specifications in Magnolia are constructed, is from Stepanov

and Musser [137]. These foundational building blocks of generic specifications and programs

manifested in C++ first as mere documentation, then as library “hacks” [162; 169], and later as a

language feature. The first proposals, see Siek’s account of the history [160], were quite ambitious,

including, e.g., semantic constraints (like Magnolia’s axioms) and concept-based overloading, but

their current form is somewhat scaled back. It is clear that concepts as a notion and language feature

has been a highly influential contribution.
2

We use Magnolia as a representative for languages designed for generic programming based on algebraic

specifications throughout the remainder of the paper. The design of Magnolia and languages in the

OBJ family draw from the same foundations, and the conclusions we draw about Magnolia should

apply to these languages as well.

1.3 Graph Library in Magnolia

The subset of the BGL we implemented is a bit larger than the subset that Garcia et al. used. It

consists of the six generic algorithms implemented by Garcia et al., i.e. Graph Search, Breadth-First

Search (BFS), Dijkstra’s single-source shortest paths, Bellman-Ford’s single-source shortest paths,

Johnson’s all-pairs shortest paths, and Prim’s minimum spanning tree, as well as a seventh algorithm,

namely Depth-First Search (DFS). Like in Garcia et al.’s first study, we omit discussion of most

algorithms for the sake of brevity—and discuss mainly our implementation of the BFS algorithm.

This implementation is at the core of the library we implemented, and follows the same pattern as

BGL’s sequential implementation of BFS, whose pseudo-code is given in Listing 1.2.

We later show how careful choices in the instantiation of backend data structures allow using the

same (seemingly) sequential BFS code to realize a parallel breadth-first graph traversal algorithm.

1.3.1 Implementing the Graph Algorithms

The BGL’s implementation is based on the textbook BFS algorithm from Cormen et al.’s “Introduction

to Algorithms” [46] that maintains the state of the traversal using a color map indexed by vertices.

BGL’s version adds to the algorithm various user-parameterizable visitor events, shown by the

commented out actions in Listing 1.2. E.g., the “discover vertex” action is performed every time

a vertex is encountered for the first time. The visitor events may modify the vertex queue (worklist) as

well as an arbitrary user-provided state. By carrying around the right state and providing appropriate

actions for each event, many algorithms can be built on top of the generic BFS implementation.

2
As a case in point, the 2021 ACM SIGPLAN International Conference on Software Language Engineering’s “Most

Influential Paper Award” was given to Design of Concept Libraries for C++ by Sutton and Stroustrup [170], https:
//twitter.com/bcombemale/status/1449743946268221440.

https://twitter.com/bcombemale/status/1449743946268221440
https://twitter.com/bcombemale/status/1449743946268221440
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Listing 1.2: Pseudo-code for the BFS algorithm implemented in the BGL [164]. Taken from https:
//www.boost.org/doc/libs/1_79_0/libs/graph/doc/breadth_first_search.html
with minor stylistic changes.

1 BFS(G, s)
2 for each vertex u in V[G] // initialize vertex u
3 color[u] := WHITE
4 d[u] := infinity
5 p[u] := u
6 end for
7 color[s] := GRAY
8 d[s] := 0
9 ENQUEUE(Q, s) // discover vertex s

10 while (Q != Ø)
11 u := DEQUEUE(Q) // examine vertex u
12 for each vertex v in Adj[u] // examine edge (u,v)
13 if (color[v] = WHITE) // tree edge (u,v)
14 color[v] := GRAY
15 d[v] := d[u] + 1
16 p[v] := u
17 ENQUEUE(Q, v) // discover vertex v
18 else // non-tree edge (u,v)
19 if (color[v] = GRAY)
20 ... // gray target (u,v)
21 else
22 ... // black target (u,v)
23 end for
24 color[u] := BLACK // finish vertex u
25 end while
26 return (d, p)

https://www.boost.org/doc/libs/1_79_0/libs/graph/doc/breadth_first_search.html
https://www.boost.org/doc/libs/1_79_0/libs/graph/doc/breadth_first_search.html
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Dijkstra’s algorithm, for instance, can be implemented by carrying a state containing edge costs and

vertex costs, and by updating the vertex costs every time an edge is examined.

The corresponding Magnolia implementation is split up into several functions across several

modules and is rather lengthy. To improve readability, we put the full listings accompanying this

section in Appendix 3.3, and intersperse only excerpts with our text here. Listing 3 presents the

GenericBFSUtils module, corresponding to lines 7 to 26 in Listing 1.2.

procedure breadthFirstVisit(obs g: Graph ,
obs s: VertexDescriptor , upd a: A, upd q: Queue ,
upd c: ColorPropertyMap) {

c a l l discoverVertex(s, g, q, a);
c a l l push(s, q);
c a l l put(c, s, gray ());
c a l l bfsOuterLoopRepeat(a, q, c, g);

}

The entry point in GenericBFSUtils is breadthFirstVisit, which discovers the initial vertex

and adds it to the queue, before calling bfsOuterLoopRepeat. The bfsOuterLoopRepeat
procedure corresponds to the outer while loop in Listing 1.2 (lines 10 to 25), with the body of the

loop implemented in bfsOuterLoopStep (reproduced below); we discuss this in more detail in

Subsection 1.3.3.

procedure bfsOuterLoopStep(upd x: A, upd q: Queue ,
upd c: ColorPropertyMap , obs g: Graph) {

var u = front(q);
c a l l pop(q);
c a l l examineVertex(u, g, q, x);
var edgeItr: OutEdgeIterator;
c a l l outEdges(u, g, edgeItr );
c a l l bfsInnerLoopRepeat(edgeItr , x, q, c, g, u);
c a l l put(c, u, black ());
c a l l finishVertex(u, g, q, x);

}

Next is bfsInnerLoopRepeat, which corresponds to the inner for-each loop in Listing 1.2 (lines 12

to 23). The inner loop’s body is implemented in bfsInnerLoopStep (see Appendix 3.3).

The initialization of the queue and the color map is done in search, which is part of the

GraphSearch module presented in Listing 1.3.

The search function is an entry point for simple graph searches in which an empty constructor

that takes no argument exists for the queue. This is the case for a FIFO queue for instance, but not

necessarily for a priority queue. For example, to implement Dijkstra’s algorithm, we might want to

use a priority queue that stores the shortest measured distance from the source to each vertex. The

empty constructor for such a queue would take this information as a parameter—thus exposing a

different API.
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Listing 1.3: Implementation of a graph search entry point in Magnolia.

implementat ion GraphSearch = {
use GenericBFSUtils;
r e q u i r e f u n c t i o n empty (): Queue;

f u n c t i o n search(g: Graph , start: VertexDescriptor ,
init: A): A = {

var q = empty (): Queue;
var vertexItr: VertexIterator;
c a l l vertices(g, vertexItr );
var c = initMap(vertexItr , white ());
var a = init;

c a l l breadthFirstVisit(g, start , a, q, c);
v a l u e a;

}
}

Listing 1.4 completes the implementation of the BFS: the types and operations are renamed and the

underlying queue data structure is set to be a FIFO queue.

Listing 1.4: Implementation of a BFS in Magnolia.

implementat ion BFS = {
use GraphSearch[ search => breadthFirstSearch ,

Queue => FIFOQueue ];
use FIFOQueue[ A => VertexDescriptor ,

isEmpty => isEmptyQueue ];
}

By keeping the requirements on the queue implementation loose in the GraphSearch module,

we can produce a DFS implementation following the same pattern as in Listing 1.4—but using a

LIFO queue (i.e., a stack) instead of a FIFO queue, and with appropriate renamings. Listing 4 (in

Appendix 3.3) shows how.

Dijkstra’s algorithm is also implemented reusing the code in GenericBFSUtils, this time using a

priority queue.

1.3.2 Specifying and Instantiating Data Structures

Both the FIFO queue and the stack concepts are easily derived from the generic Queue concept in

Listing 1.5; the stack case is shown in Listing 1.6. Note that the concept of a stack exposes an operation

named top instead of one named front. Thanks to the use of Magnolia’s powerful renaming

mechanism, this is not a problem: we can instantiate generic algorithms with data structures that

provide the expected API up to renaming.

The concept in Listing 1.6 describes a stack by virtue of the axioms that refine a generic queue
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Listing 1.5: Specification of a generic queue in Magnolia.

c o n c e p t Queue = {
r e q u i r e type A;
type Queue;

p r e d i c a t e isEmpty(q: Queue );
procedure push(obs a: A, upd q: Queue );
procedure pop(upd q: Queue) guard !isEmpty(q);
f u n c t i o n front(q: Queue): A guard !isEmpty(q);

}

Listing 1.6: Specification of a generic stack in Magnolia.

c o n c e p t Stack = {
use Queue[ Queue => Stack , front => top ];

f u n c t i o n empty (): Stack;
axiom pushPopTopBehavior(s: Stack , a: A) {

var mut_s = s;
c a l l push(a, mut_s);
a s s e r t top(mut_s) == a;

c a l l pop(mut_s);
a s s e r t mut_s == s;

}
axiom emptyIsEmpty () {

a s s e r t isEmpty(empty ());
}

}



1

1.3 Graph Library in Magnolia 53

concept’s behavior. Magnolia allows specifying axioms as part of concepts. They place restrictions

on the behavior of operations’ implementations. The pushPopTopBehavior axiom, for example,

tells us that whenever a value a is pushed to any stack s, calling top on the resulting stack s′ yields a;

similarly, calling pop on s′ yields s.

Possible (hand-coded) user-provided backend data structure implementations for the stack concept

of Listing 1.6 are given in Appendix 3.3 in Listings 5 (for C++) and 6 (for Python).

1.3.3 Abstracting the Schedule of the Algorithms

When comparing the Magnolia implementation to the pseudo-code in Listing 1.2, one can notice

that the former has no loop structure. The outer (while) loop in the pseudo-code is implemented

by a triplet of operations: bfsOuterLoopCond, which corresponds to the condition of the loop,

bfsOuterLoopStep, which corresponds to the body of the loop, and bfsOuterLoopRepeat,

which is called to start the loop. The inner for-each loop is implemented by a pair of operations,

bfsInnerLoopRepeat and bfsInnerLoopStep.

Though this may seem tedious, it is by design that Magnolia provides no loop structure. The ideal

manner to schedule and allocate computations (in a loop or otherwise) depends heavily on the

hardware architecture, and by not having loops Magnolia forces this choice to remain a parameter,

defined in a base library in the host language.

A generic specification of a while loop in Magnolia is presented in Listing 1.7, and a corresponding

C++ backend data structure implementation is shown in Listing 7—the latter listing can be found

in Appendix 3.3. The WhileLoop concept describes an API that takes two types (Context and

State) and two operations (cond and step), and provides a repeat procedure whose behavior

must correspond to the constraints expressed in the whileLoopBehavior axiom. By implementing

projections on the opaque Context and State types, and updates on State, we can carry around

arbitrarily complex contexts and states.

For the experiments described in Section 1.5, we implemented the loops of Listing 3 differently, to carry

several state and context arguments. This was done for performance reasons, to avoid the overhead of

packing and unpacking the State and Context objects. Magnolia lacks variadics, definitions that

are generic on arity, i.e. on the number of arguments. Such a feature could let us avoid the packing

and unpacking without the need to specify different concepts. We discuss this further in Section 1.4.

Abstracting away the loop structure (instead of providing a native Magnolia construct) has advantages:

repetition can be implemented differently for different data structures or different target architectures.

In our small BGL fragment, we exploited this aspect of Magnolia to provide two different backend

implementations (in C++) for the inner for-each loop of the BFS algorithm: one that uses a sequential

for loop and another that uses a parallel for loop based on OpenMP [143]. This is possible because

the algorithm does not enforce a processing order on not-yet-visited vertices adjacent to the current

vertex—the iterations of the inner loop are independent. The parallel version of the code also requires

using explicitly thread-safe data structures for the vertex queue (and for the user-provided state,

depending on how it is modified by the visitor events).

The difference in code when going from sequential to parallel is minimal: when concretizing our

generic BFS algorithm, it suffices to use three modules exposing the same API as their sequential
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Listing 1.7: Specification of a generic while loop in Magnolia.

c o n c e p t WhileLoop = {
r e q u i r e type Context;
r e q u i r e type State;

r e q u i r e p r e d i c a t e cond(s: State , c: Context );
r e q u i r e procedure step(upd s: State , obs c: Context );
procedure repeat(upd s: State , obs c: Context );

axiom whileLoopBehavior(s: State , c: Context) {
i f cond(s, c) then {

// if the condition holds , then doing one step
// and completing the loop is the same as just
// completing the loop
var mutableState1 = s;
var mutableState2 = s;
c a l l repeat(mutableState1 , c);
c a l l step(mutableState2 , c);
c a l l repeat(mutableState2 , c)
a s s e r t mutableState1 == mutableState2;

}
e l s e {

// otherwise , the state shouldn ’t change
var mutableState1 = s;
c a l l repeat(mutableState1 , c);
a s s e r t mutableState1 == s;

};
}

};
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counterpart, but with different properties. By not committing to a looping mechanism too early, we

gain a new powerful axis of parameterization.
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1.4 Generic Features: Evaluation

With an understanding of the Magnolia implementation of the generic graph library, we can relate

the code to the important language properties for generic programming identified by Garcia et al. [61]

and Siek and Lumsdaine [163]. Figure 1.2 summarizes how Magnolia fares.
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Figure 1.2: The level of support in Magnolia for properties for generic programming. For the reader’s

convenience, we reproduce here the original characterization of C++, SML, OCaml, Haskell, Java, C#,

Cecil, C++0x, and G from Siek and Lumsdaine [163] (omitting footnotes with detailed commentary).

indicates full support, indicates poor support, and indicates partial support. The rating of "-"

for C++ indicates that while C++ does not explicitly support the feature, one can still program as if the

feature were supported. The level of support for property-based specifications and variadics is indicated

for the latest release of each language at the time of writing, i.e. respectively, for the first seven columns,

C++20, SML’97, OCaml 4.14, Haskell 2010, Java 18, C# 11, and Cecil 3.2 [33]. We evaluate C++0x as

it was envisioned, as opposed to its eventual partial adoption in C++11. To the best of the authors’

knowledge, G has only had one release.

We should be cognizant that the list of properties is a reflection of the desire to express generic programs

well in mainstream multi-paradigm languages, and maybe even based on experiences and programming

idioms of C++. This is understandable: while Stepanov’s and Musser’s generic programming notions

evolved through many languages, including Scheme and Ada, they materialized most prominently in

C++. It is thus the case that even though the evaluation with the listed properties revealed shortcomings

in programming languages, the properties arose from a C++-centric view of generic programming.

Some are artifacts of this view and others more of a means to an end, rather than an essential part

of a foundation for generic programming. Indeed, despite the several empty bullets in Magnolia’s

column in Figure 1.2, the BGL experiment was successful, likely because Magnolia builds its generics

on somewhat different foundations than any of the languages studied by Garcia et al. (we like to think

that it is closer to Stepanov’s and Musser’s ideals).
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We also note that while the list of properties is rather comprehensive, we did end up adding two

new items: variadics and property-based specifications. These are not relevant only to Magnolia, but

would have been interesting topics of study in the original evaluation as well: variadic templates were

studied after Garcia et al.’s evaluation [75] and the feature is today part of standard C++; property-based

specifications (axioms) were proposed to be included in C++, e.g., for enabling optimizations, and the

Haskell GHC compiler supports such specifications (in compiler pragmas) for rewriting [145].

For each of the properties listed in Figure 1.2, we give below its definition as given by Siek and

Lumsdaine [163], motivate it briefly, and discuss its relevance and realization in Magnolia. We do

not do any reimplementation for the previously studied languages. However, for the new properties

we introduced, we also discuss their realization in the most recent release of the previously studied

languages at the time of writing.

Multi-type concepts

A concept can be implemented by a collaboration of several types.

Multi-type concepts in generic programming correspond to multi-sorted signatures with axioms

in algebraic specifications, and both arise naturally and often. Magnolia’s concepts can declare any

number of types and define syntactic and semantic requirements on any combination of them.

Further, the partial order of concepts that arises from Magnolia concept definitions and their use
declarations is not in any way constrained by the types declared in the concept that uses or the concept

that is being used. Any name conflicts that might arise are easily resolved with renaming types and

operations. Magnolia thus fully supports multi-type concepts.

By contrast, in many other languages, in particular in object-oriented ones, concepts are approximated

by interfaces/classes, which are types. These interface/class types are treated differently from other

types of the concept (defined as type parameters to the generic interface), which introduces many

restrictions, and obstacles for the clean expression of generic programs [61; 101].

Multiple constraints

More than one constraint can be placed on a type parameter.

A few of the languages studied by Garcia et al. had restrictions when constraining types by more than

one concept; the reasons are technical, and discussed in prior work [61]. In Magnolia there are no

restrictions: multiple constraints merely mean that a particular type appears in more than one use
declaration. All definitions from used concepts are brought to the same scope; the type’s constraints

are thus a union of its requirements in these concepts.

Associated type access

Types can be mapped to other types within the context of a generic function.

In most object-oriented languages studied by Garcia et al., the only way to declare types of a concept

is as type parameters of a generic. The evaluation called for a mechanism for defining type members,
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“associated” types of the “main” type(s) of the concept. One could do this in C++ with trait classes and

in Haskell, at the time with the functional dependencies extension, later with associated types [32].

Today, Rust and Swift also have similar notions. Associated types solve problems of instantiating

concepts with positional type parameters, e.g., that they can shorten the parameter lists considerably.

Järvi et al. [101] detail these problems in Java and C#.

In Magnolia, there is no distinction between main types and associated types. All types are opaque,

and accessible by their name. Magnolia uses of concepts only mention the types (and operations)

that the programmer needs or wants to rename—there is no need to anticipate which types are better

expressed as main types, which as associated types.

Constraints on associated types

Concepts may include constraints on associated types.

Declaring constraints on associated types leads to problems in several languages; Java and C#, for

example, require redundant constraints (for complex technical reasons [101]). As discussed above, all

types in a concept are treated the same in Magnolia, and hence Magnolia supports constraints on

associated types as it does for any type.

Retroactive modeling

New modeling relationships can be added after a type has been defined.

Problematic languages concerning this property are languages where the declaration that a data type

satisfies a certain set of requirements (a concept or concepts) takes place at the site of definition of the

data type. This is the case for object-oriented languages that fix the bases of a class when the class is

defined. But even in Haskell, where an instance declaration is distinct from both a datatype and a type

class definition, retroactive modeling can be limited. An example is changes to Haskell’s standard

library and its type class hierarchy. In 2014 the Applicative typeclass was suggested to be made

a superclass of the Monad typeclass [2]. Such a change breaks Monad instances (models) where the

corresponding Functor and Applicative instances are not implemented. This change occurred

after the study of Garcia et al. [61], and thus likely was not considered when evaluating the support

of Haskell for retroactive modeling—the study characterized Haskell as fully supporting retroactive

modeling.

Listing 1.8 builds up to the concepts of a commutative magma with a left absorbing element, and of

a commutative magma with a right absorbing element. The two concepts are equivalent, i.e., each

concept models the other. Each modeling relationship is expressed through a satisfaction relation (see

CommutativeZeroLR and CommutativeZeroRL). Satisfaction relations can be added at any point

in the program, hence Magnolia satisfies the retroactive modeling property.

Type aliases

A mechanism for creating shorter names for types is provided.
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Listing 1.8: An example of equivalent specifications in Magnolia.

c o n c e p t CommutativeMagma = {
type T;
f u n c t i o n bop(t1: T, t2: T): T;
axiom commutativity(t1: T, t2: T)) {

a s s e r t bop(t1, t2) == bop(t2 , t1);
}

}

c o n c e p t CommutativeMagmaWithLeftZero = {
use CommutativeMagma;
f u n c t i o n zero (): T;
axiom leftAbsorption(t: T) {

a s s e r t bop(zero(), t) == zero ();
}

}

c o n c e p t CommutativeMagmaWithRightZero = {
use CommutativeMagma;
f u n c t i o n zero (): T;
axiom rightAbsorption(t: T) {

a s s e r t bop(t, zero ()) == zero ();
}

}

s a t i s f a c t i o n CommutativeZeroLR =
CommutativeMagmaWithLeftZero models

CommutativeMagmaWithRightZero;

s a t i s f a c t i o n CommutativeZeroRL =
CommutativeMagmaWithRightZero models

CommutativeMagmaWithLeftZero;

The problem of long names in generic programming often arise from a large number of type

parameters (due to the representation of associated types as type parameters). In Magnolia, concepts

are not represented by types—type names are not parameterized, their names thus stay atomic.

Magnolia does support type aliases too, however, through the mechanism of renaming — see once

again lines 15 and 16 in Listing 1.1. Magnolia does not allow declaring a new alias for a type (or operation)

in the same module expression. That being said, it is possible to make declarations with different

names in a module expression, and to later merge them using renaming, therefore “retroactively”

aliasing the two declarations.

Separate compilation

Generic functions can be compiled independently of calls to them.
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The motivation behind separate compilation is attaining better compilation speed by avoiding

recompiling generic definitions every time their uses are compiled. All languages but C++ in Garcia et

al.’s evaluation have this compilation model; in C++ the compiler generates a distinct piece of code for

each different template instantiation. While Garcia et al. bundled separate compilation and modular

type checking under one language property, Siek and Lumsdaine [163] split them into two distinct

properties. This allows to more precisely characterize C++ after the concepts feature was added—C++

today partially supports modular type checking but not separate compilation.

In Magnolia, generic operations are type checked where they are declared. They may undergo name

changes during renamings, but after these are resolved, a call to a generic function needs only to be

checked against the function’s declaration, so Magnolia supports modular type checking. Adhering

strictly to the definition given above, Magnolia could be said to support separate compilation: each

monomorphic operation is transpiled to the host language independently of calls to it (and the

compilation of transpiled Magnolia code to executable code is host language-dependent). However, a

distinct piece of code is emitted for each instantiation of a generic function definition — resulting in

a compilation model similar to C++’s, and not one which achieves the goals of the property.

Implicit argument deduction

The arguments for the type parameters of a generic function can be deduced and do not need to be
provided by the programmer. Also, the finding of models to satisfy the constraints of a generic function is
automated by the language implementation.

Garcia et al. describe the lack of implicit type argument deduction to result in verbose generic

algorithm invocations. Most languages avoid problems by deducing the type parameters of a generic

function from the types of its function arguments. Magnolia avoids this problem in a different way:

there are no implicit arguments to deduce in the first place. Operations are always monomorphic, and

each argument’s type is resolved whenever renaming occurs. Whenever a call occurs, there is almost

always a single corresponding prototype in scope. The exception is when a call can resolve to several

functions overloaded solely on their return type. In that case, a type annotation must be provided by

the user to disambiguate between the matches.

Modular type checking

Generic functions can be type checked independently of calls to them.

Because of C++’s lack of modular type checking, debugging type errors in generic code in C++ is often

very difficult. The C++ concepts language feature fixes this problem partially: uses of templates are

checked against type parameter constraints but definitions of templates are not checked. The bodies of

C++ template functions are (still) type checked only after their instantiation, which can delay catching a

type errors in the implementation of a generic library until it is used in client code. Magnolia supports

modular type checking of both the uses and definitions of generic code, as described above in the

discussion of Separate compilation.
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Lexically scoped models

Model declarations are treated like any other declaration, and are in scope for the remainder of the
enclosing namespace. Models may be explicitly imported from other namespaces.

Siek and Lumsdaine implement lexically scoped models in G [163], in order to be explicit about which

models are in scope. One motivation for this feature is to avoid the problem of overlapping models

(corresponding to overlapping instances in Haskell, with concepts corresponding to typeclasses,

models to typeclass instances). Suppose we want to define an instance of the Semigroup typeclass

for Int in Haskell. The Haskell 2010 Language Report [1, Chapter 4] dictates that “A type may not be
declared as an instance of a particular class more than once in the program.”. However, there is more

than one intuitive instance of Semigroup for Int, as shown in Listing 1.9.

Listing 1.9: Overlapping instances in Haskell.

-- A.hs
i n s t a n c e Semigroup Int where

(<>) = (+)
-- B.hs
i n s t a n c e Semigroup Int where

(<>) = (*)
-- C.hs (imports A, B)
-- error: Overlapping instances for Semigroup Int
val = (2 :: Int) <> 3

Attempting to call (<>)with both of these definitions in scope results in an error. This can be worked

around in awkward ways, e.g. using newtypes, or wrappers around class methods [180]. The crux of

the issue here is that typeclass instances are not first-class in Haskell.

It is not clear if the lexically scoped models property is actually sufficient to solve the problem of

overlapping models. The approach works well when the different models are used in different scopes,

but does not seem to offer a solution when one wants to have them in the same scope. One example

of such a use case is united monoids, an algebraic structure involving two monoids with the same unit

element [126]. Approaches such as named instances [103] or the CONCEPT pattern in Scala [141] can

address this issue.

The issue does not arise in Magnolia either: one can bring two different models of the same

concept into the same scope and resolve the overlap explicitly using the renaming mechanism—see

ConcreteSemiGroup in Listing 1.1 for an example. The property is thus supported by design.

Concept-based overloading

There can be multiple generic functions with the same name but differing constraints. For a particular
call, the most specific overload is chosen.

The C++ standard library’s hierarchy of iterator concepts includes two concepts, InputIterator and

ForwardIterator, whose signatures agree—they differ only on their operations’ semantic requirements.

In particular, the former does not admit restarting the iteration. There are well-motivated cases for
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overloading a function where the overloads should be differentiated based only on whether their

argument types model one or both of these concepts [168]. However, overloading on semantics

is problematic in the general case. To specialize based on the semantics of two concepts with

exactly the same API, the compiler needs to partially order them. Consider the two concepts

CommutativeMagmaWithRightZero and CommutativeMagmaWithLeftZero from Listing 1.8.

If one specializes an algorithm on their semantics, the following happens:

• if the compiler is unable to deduce that the specifications are equivalent, one specialization is

picked at each call site and compilation succeeds;

• if the compiler is able to deduce that the specifications are equivalent, the compiler cannot

specialize and compilation fails.

This implies that once correct code may become incorrect as the compiler’s reasoning abilities get

more powerful and it can deduce more properties from the same axioms. And indeed, C++ does not

really do overloading on semantics. It equips each iterator concept with a tag-type, creating thus a

syntactic difference between the two concepts’ requirements, which is really what is used as a criterion

in overload resolution.

Magnolia does not provide support for concept-based overloading. Arguments to an operation are

always instances of the exact types specified in the operation’s prototype. In the absence of subtyping,

classic overloading is sufficient to resolve every call to the right implementation. The modular structure

of Magnolia code allows the programmer to defer the implementation of types and operations as

long as is necessary to sufficiently refine their semantic requirements and explicitly determine which

implementation should be chosen.

Same-type constraints

The notion of same-type constraints lacks a precise definition in Siek and Lumsdaine’s work. We give

it the following definition: It is possible to force two type parameters to refer to the same type.

In Magnolia, two types are the same if they have the same name. The renaming mechanism allows

forcing different concepts to depend on the same type, by bringing them into the same scope and

renaming their type parameters to the same name. This is slightly different from a type constraint:

instead of requiring two constrained type parameters, the resulting module has a single type parameter.

This mechanism is demonstrated lines 15 and 16 in Listing 1.1: the Magma module is brought into

scope twice, and its type parameter T is forced to the same name int.

First-class functions

Supporting anonymous functions with lexical scoping as first-class citizens of the language.

Magnolia does not support higher-order functions. This is intentional: it keeps Magnolia programs

simpler to reason about. We do not lose out on expressivity—in lieu of higher-order functions,

the Magnolia programmer can use a parameterized module [64], and deal with potential naming

conflicts by leveraging once more the renaming mechanism. This is, however, certainly a trade-off on

convenience. For example, the most cumbersome aspects of implementing the graph library were
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the looping structures, split into several concepts and functions (see e.g. Listings 1.7 and 7), which

with higher-order functions could have been implemented with a single function parameterized by a

function parameter.

Property-based specifications

We define the property as follows: Arbitrary semantic constraints on types and operations can be defined.

Property-based specifications are a desirable feature that can enable strong correctness guarantees and

formal verification of code. Such semantic constraints are mentioned in Garcia et al.’s study [61], but

they are not evaluated due to the lack of support for them in the studied languages. The way we specify

properties in Magnolia axioms is through assertions—and in fact, any programming language with

assertions can produce some sort of library support for property-based specifications. We explicitly

do not consider this to qualify as language support for property-based specifications in Figure 1.2, but

we mention some such libraries below.

C++20 implements a scaled back version of C++0x’s concepts which does not provide support for

semantic constraints—but only for same-type constraints and API modeling constraints. Bagge

et al. previously built a testing system atop concepts and axioms implemented using template

metaprogramming in C++11 [20].

SML does not support property-based specifications. We note that property-based specifications

for SML programs can be expressed in Sannella and Tarlecki’s Extended ML [152]. However, the

semantics of Standard ML are not fully compatible with the theory of algebraic specifications, and

the approach suffers from a semantic gap common in many approaches to formal verification of

software [153].

OCaml does not support property-based specifications. Xu showed how OCaml could be augmented

with a contract declaration construct, along with both static and dynamic contract checking

features [178]. However, to the best of the authors’ knowledge, this research did not lead to the

implementation of such a feature in OCaml. Design by contract (DbC) is a common approach to

software correctness made popular by Eiffel [124; 125]. DbC has roots in Floyd-Hoare logic [55; 94]

and uses assertions to specify preconditions, postconditions, and invariants on programs. Bagge et

al. point out limitations with pre/postconditions for specifying generic APIs, e.g., difficulties of

capturing properties like associativity or transitivity, and show how they are subsumed by axioms [19].

Haskell’s support for property-based specifications is limited. One visible consequence of this is that

typeclass laws are typically stated only as documentation, and it is up to the programmer of a typeclass

instance to ensure that they hold. However, the language’s powerful type system and extensions

allow specifying and enforcing sophisticated invariants. For example, Bailey and Gale encoded the

full FIDE ruleset at the type level [21]. Noonan shows a design concept for validating preconditions

at compile time by constructing proofs inhabiting phantom type parameters [139]. Haskell also offers

good support for property-based testing, through the QuickCheck library [40]. Like for OCaml,

some work on enabling static contract checking in Haskell was initiated, but did not lead to the

implementation of such a feature in the language to the best of the authors’ knowledge [179]. Also

worthy of note is LiquidHaskell, a static verifier for Haskell based on liquid types [151]. Liquid types

are refinement types [57] with logical predicates coming from a decidable sublanguage—allowing

decidable type checking and inference.
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Java itself does not support property-based specifications. However, there exist a number of tools

extending Java to provide varying levels of support for property-based specifications. One such tool is

the Java Modeling Language (JML), which draws from the design by contract approach and from

algebraic specifications to allow for specifying the behavior of Java modules [116]. Another one is JAxT,

a tool that generates JUnit test cases from static methods representing axioms [85; 86]. In addition,

there exists several libraries implementing property-based testing à la QuickCheck for Java—one

example is junit-quickcheck [95].

C# itself does not provide support for property-based specifications. Similarly to Java, several tools

exist that address this shortcoming. For example, Spec# is a superset of C# which allows specifying and

verifying method contracts (pre- and postconditions), object invariants, and loop invariants [22]. Code

contracts are another approach that enables design-by-contract programming in .NET programming

languages [53].

Cecil does not provide support for property-based specifications.

Axioms were supported in C++0x concepts, and the language had full support for property-based

specifications.

Siek and Lumsdaine’s G [163] does not implement such semantic constraints, restricting itself to

same-type constraints and API modeling constraints (similarly to the concepts implemented in C++20).

Magnolia supports property-based specifications in the form of axioms in concepts. These formulas

are boolean expressions with free variables, thus encompassing equational and conditional equational

specifications as common in algebraic specifications [26]. Boolean expressions have the benefit of being

readily handled by programming language compilers and tools, allowing us to compile axioms as test

oracles and systematically test a program’s compliance with its specification [20]. The axiom formalism

and the program code are semantically compatible, thus avoiding the semantic gap mentioned

previously [153]. Magnolia axioms can be leveraged in practice for program optimizations [39] and for

proving the correctness of Magnolia specifications [83].

Variadics

We define the property as follows: Operations can have a variable number of arguments of different
types.

C++ and C++0x allow generic operations to take in a variable number of arguments of different types

through variadic templates [75]. In a variadic context, any type expression can be repeated, including

expressions containing the const qualifier, the lvalue and rvalue reference declarators, or any concept
constraint. We note that variadic templates were introduced in C++11, a version of the language that

postdates both Garcia et al.’s and Siek and Lumsdaine’s studies. The version of C++ evaluated in the

previous studies did not support variadics, but C++0x did.

It is possible to implement functions that support a variable number of arguments of different

types in OCaml, as demonstrated in the current implementation of the Format module [174]. This

implementation of variadics relies on heterogeneous lists, which are in turn implemented in OCaml

with difference lists leveraging Generalized Algebraic Data Types (GADTs) [148; 154]. There are

limitations to this approach, related to the mixing of GADTs and subtyping [148; 155].
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Like for OCaml, there is no obvious way to define functions that take a variable number of arguments

of different types in Haskell [92]. It is however possible to define variadic functions through type

hackery, as demonstrated by the HList library [106; 107]. Haskell’s expressivity allows for several

reasonable ways to create such functions—as noted in the source code of HList [108]. Since 2015,

heterogeneous lists are implemented using a data family [156].

Support for variadics in Java is only partial. It is possible to define operations that take a variable

number of arguments of different, arbitrary types in Java by adding an argument of typeObject... to

the end of their argument list. The ellipsis syntax is syntactic sugar for passing in a single-dimensional

array of the specified type as an argument. Object is a superclass for every defined class in Java,

ensuring that the function can be called with parameters of any object type. Note that this excludes

primitive types, which are not subclasses of Object, and for which there is no obvious solution.

Support for variadics in C# is limited. It is possible to define functions that take a variable number of

arguments of different types in C# by using the params keyword to pass in an arbitrary number of

arguments of type either object or dynamic. The params keyword is syntactic sugar for passing in

an array as a parameter. Arguments given the dynamic type can not be type checked at compile time,

and will cause run time exceptions if used inappropriately. Arguments converted to the object type

must eventually be unboxed to the correct type to be used. In this case, some errors can be caught at

compile time, and others at run time. It is also not possible to pass a variable number of generic type

parameters to a function.

None of SML, Cecil, and G [159; 163] (to the best of our knowledge) offer support for variadics.

Because all types are opaque in Magnolia, data structures are characterized only on the set of externally-

implemented functions that construct or consume them. To define a record-like type with n fields

in Magnolia requires one type definition, along with 2n + 1 function definitions (one projection

and one update for each field, and a constructor). This quickly leads to a large number of functions.

These projections and updates may also be expensive, as discussed in Subsection 1.3.3; there, we solved

both problems by defining several loop concepts and backend implementations, each with a carefully

chosen number of state and context types and parameters. This solution has its own drawbacks

though: concepts and implementations are (mostly) duplicated, including axioms. Adding support

for variadics to Magnolia would achieve the same outcomes, while eliminating the need for code

duplication. We briefly discuss an approach for supporting variadics in Magnolia in Section 1.6.

1.5 Performance

Another key idea in generic programming is that abstracting an algorithm should have no impact

on performance: when a generic algorithm is specialized to the concrete case, it should be just as

efficient as if the algorithm had been written directly as the non-generic case. We tested whether

Magnolia and its BFS implementation satisfy this criterion. Figure 1.3 compares the performance of

two instantiations of our BFS implementations; for both, C++ was the host language. The figure also

shows the performance of BGL’s BFS implementation.

The two Magnolia implementations use the same generic algorithm with different backend data

structures. The red bars show the performance of an instantiation that uses the same data structures

as the BGL’s algorithm (blue bars). The yellow bars show an instantiation of the Magnolia code that
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Figure 1.3: Performance comparison of running the sequential version of the BFS algorithm: the

leftmost columns (blue) are for BGL’s C++ implementation, the middle (red) ones for the Magnolia

implementation where the base library uses the same data structures as BGL, and the rightmost (yellow)

ones for the Magnolia implementation that moves the language-library border further towards the

language, providing highly parameterizable data structures. Both Magnolia implementations used C++

as the host language. Each implementation is run 10 times in total, and the running times are averaged.

Every implementation is tested against the same 10 randomly generated graphs. Each graph is directed

and contains 10
6

vertices. The test programs are compiled using g++ 10.2.0, with optimization level

O3, on an Intel(R) Xeon(R) Silver 4112 CPU @ 2.60GHz.

uses our own ad-hoc, prototype data structures. The transpiled algorithms are identical to the one

implemented in the BGL. When using the same underlying data structures, the Magnolia and BGL

C++ implementations perform equally well, showing that our generic abstraction in Magnolia is indeed

cost-free.

Instantiating the algorithm with our prototype data structures produces code that runs roughly

2.5–3.5 times slower, depending on the number of edges in the graph. At the same time, these data

structures offer more flexibility to the user by virtue of being more parameterizable—highlighting

a trade-off between parameterization and performance here. Magnolia allows fine-grained choice

of level of abstraction on the host language. This makes exploring the possible combinations of

backend data structures easy. No particular effort was put in tuning our prototype data structures for

performance: it is entirely possible that a more careful and as parameterizable design could match the

BGL implementation’s performance.

The transpilation of our Magnolia code to a host language does not add much overhead: it takes less

than a second to transpile the whole fragment of the BGL we implemented. In contrast, compiling

the final binary from the C++ code which imports the BGL takes more than seventeen seconds
3
.

We did not run performance tests with Python as the host language. We can expect the current

implementation to be slow, because we left overload resolution to be performed in Python (out of

convenience), using multiple dispatch.

3
Compilation times reported for an Intel(R) Core(TM) i5-7300U CPU @ 2.60GHz.
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1.6 Discussion and Conclusion

Garcia et al.’s study [61] paved the way for evaluating support for generic programming of languages.

The properties the authors identify as important point out issues of retrofitting generic programming

into existing languages. This in fact led language implementors to address these issues and improve

their language’s support for generic programming [31; 32]. Siek and Lumsdaine’s G demonstrates how

a language based on these properties enables generic programming. Our work takes a step back from

these works and looks at generic programming from the angle of algebraic specifications, repeating

the experiment [61] with Magnolia—a language representative of the algebraic approach. Magnolia is

not shoehorned into the properties that Garcia et al. identified, yet provides extensive support for

generic programming.

Our evaluation in Section 1.4 shows that the renaming mechanism plays a crucial role in enabling

generic programming in Magnolia. Renaming is Magnolia’s pragmatic version of signature morphisms.

It allows control over the naming of types and operations, both to keep them separate as needed for

implementations, but also to coordinate naming within concepts when joining them together. This

is somewhat less powerful than the signature morphisms supported by CASL [26], yet powerful

enough to enable a high level of reuse between modules. Carette et al. recently investigated union and

renaming as a reuse mechanism for modular specification of mathematical concepts [30].

Every programming language is its own formal system with its own advantages and inconvenients, and

Magnolia is no exception. For example, while the algebraic approach gives extreme flexibility when

it comes to parameterizing and combining modules, this flexibility comes at a usability cost: when

developing in Magnolia, it is hard to keep track of what is in scope at a given line and where declarations

come from. The problem is further exacerbated by the renaming mechanism. Tool support (e.g., in

the form of an IDE) is crucial for Magnolia development. Bagge described an implementation of

an IDE for Magnolia integrated with Eclipse [15]. The newer magnoliac compiler provides a basic

interactive toplevel that allows users to inspect the content of loaded modules [35]. The design and

development of a fully-fledged IDE for Magnolia will inform on whether the reasoning problems we

faced when implementing the BGL in Magnolia can be mitigated, and is a topic of future work for us.

In Gibbons’ taxonomy of generic programming [62] we characterized Magnolia as supporting

genericity by property. This axis of genericity has been an inspiration of new features for C++

(concepts), and there has been expectations that proper language support for expressing semantic

properties (axioms in concepts) will lead to domain-specific optimization opportunities, more precise

static checking of code for semantic errors, and more flexible (concept-based) overloading. This

experiment with Magnolia accentuates some challenges that will remain, even with full language

support for properties. In particular, in our evaluation we discuss concept-based overloading and

why overloading based on semantic properties is problematic. Further, there are challenges with

the expression of semantic constraints in concepts. Sometimes axioms are not expressible by using

solely the operations that a concept is meant to expose—additional operations need to be added to

the concept just to be able to express a semantic property [24]. Listing 8 gives an example: given

g: Graph, vertices(g) returns the collection of all vertices in g. Given v: Vertex a vertex of

g, adjacentVertices(g, v) returns the collection of all the vertices adjacent to v in g. There is

a subset relation between adjacentVertices(g, v) and vertices(g). To state this property

through an axiom, we would need additional operations on VertexCollection, e.g., the ability to

check whether a Vertex is a member of a VertexCollection. These operations and the axiom

are shown as commented out.
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Another challenge we identified with Magnolia is the inability to express variadic generic definitions.

The general mechanism of syntactic theory functors [87] seems well-suited for implementing variadics

in Magnolia. In fact, also renaming can be expressed as STFs. These connections are topics for future

work for us.
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2.1 Introduction

Given an address space, the data layout and the pattern of accessing that data are fundamental for the

efficient exploitation of the underlying computer architecture. The access pattern is determined by a

numerical algorithm, which may have been tuned to produce a particular pattern. The data layout

may have to be adjusted explicitly to a given pattern and the computer hardware architecture. At the

same time, high-performance environments are evolving rapidly and are subject to many changes.

Moreover, numerical methods and algorithms are traditionally embedded in the application, forcing

rewrites at every change. Thus the efficiency and portability of applications are becoming problematic.

Under this scenario, software or hardware modifications usually lead to a tedious work of rewriting

and tuning throughout which one must ensure correctness and efficiency. To face this scenario, the

scientific community suggests a separation of concerns through high-level abstraction layers.

Burrows et al. identified a Multiarray API for Finite Difference Method (FDM) solvers [28]. We

investigate the fragment of the Mathematics of Arrays (MoA) formalism [127; 130] that corresponds to

this API. MoA gives us the ψ -calculus for optimizing such solvers. We present a full system approach

from high level coordinate-free Partial Differential Equations (PDEs) to preparing for the layout of

data and code optimization, using the MoA as an intermediate layer and the Magnolia programming

language [14] to explore the specifications. In this framework, a clean and natural separation occurs

between application code, the optimization algorithm and the underlying hardware architecture,

while providing verifiable components. We fully work out a specific test case that demonstrates an

automatable way to optimize the data layout and access patterns for a given architecture in the case of

FDM solvers for PDE systems. We then proceed to show that our chosen fragment of the rewriting

system defined by the ψ -calculus makes up a canonical rewriting subsystem, i.e. one that is both

strongly normalizing and confluent.

In the proposed system, algorithms are written against a stable abstraction layer, independent of

the underlying numerical methods and changes in the architecture. Tuning for performance is still

necessary for the efficient exploitation of different computer architectures, but it takes place below

this abstraction layer without disturbing the high-level implementation of the algorithms.

This paper is structured as follows. Section 2.2 presents the related work, and a concise literature

review of the state of the art. Section 2.3 introduces the general software stack composition and design

used for our purposes. Section 2.4 details the optimizations and transformation rules. The PDE

solver test case showcasing the framework is presented in Section 2.5. Finally, conclusions are given in

Section 2.6.

2.2 Related Work

Whole-array operations were introduced by Ken Iverson [100] in the APL programming language, an

implementation of his notation to model an idealized programming language with a universal algebra.

Ten years later, shapes were introduced to index these operations by Abrams [4]. Attempts to compile

and verify APL proved unsuccessful due to numerous anomalies in the algebra [172]. Specifically, ισ
was equivalent to ι⟨ σ ⟩, where σ is a scalar and ⟨ σ ⟩ is a one element vector. Moreover, there was

no indexing function nor the ability to obtain all indices from an array’s shape. This caused Perlis to

conclude the idealized algebra should be a Functional Array Calculator based on the λ-calculus [172].
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Even with this, no calculus of indexing was formulated until the introduction of MoA [127]. MoA

can serve as a foundation for array/tensor operations and their optimization.

Numerous languages emerged with monolithic or whole-array operations. Some were interpreted (e.g.

Matlab and Python), some were compiled (e.g. Fortran90 and TACO [109]) and some were Object

Oriented with pre-processing capabilities (e.g. C++ with expression templates [47; 161]). Current

tensor (array) frameworks in contemporary languages, such as Tensorflow [3] and Tensor Toolbox [12]

provide powerful environments to model tensor computations. None of these frameworks are based

on the ψ -calculus.

Existing compilers have various optimizations that can be formulated in the ψ -calculus, e.g. loop

fusion (equivalent to distributing indexing of scalar operations in MoA) and loop unrolling (equivalent

to collapsing indexing based on the properties of ψ and the ψ -correspondence Theorem (PCT) in

MoA [130]). Many of the languages mentioned above implement concepts somewhat corresponding

to MoA’s concept of shape and its indexing mechanism. It is, however, the properties of the ψ -

calculus and its ability to obtain a Denotational Normal Form (DNF) for any computation that make

it particularly well-suited for optimization.

Hagedorn et al. [81] pursued the goal of optimizing stencil computations using rewriting rules in

LIFT.

2.3 Background, Design and Technologies

We present the design of our library-based approach structured by layers. Figure 2.1 illustrates this

abstract generic environment. At the domain abstraction layer, code is written in the integrated

Figure 2.1: Layer abstraction design; generic environment approach.

specification and programming language Magnolia, a language designed to support a high level of

abstraction, ease of reasoning, and robustness. At the intermediate level, the MoA formalism describes
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multi-dimensional arrays. Finally, through the ψ -correspondence theorem, the array abstraction layer

is mapped to the final low-level code.

2.3.1 Magnolia

Magnolia is a programming language geared towards the exploration of algebraic specifications. It is

being designed at the Bergen Language Design Laboratory [14]; it is a work in progress and is used to

teach the Program Specification class at the University of Bergen, Norway. Magnolia’s strength relies

in its straightforward way of working with abstract constructs.

Magnolia relies primarily on the concept module, which is a list of type and function declarations

(commonly called a signature) constrained by axioms. In Magnolia, an axiom defines properties that

are assumed to hold; it however differs from the usual axioms in mathematics in that an axiom in

Magnolia may define derived properties. Functions and axioms may be given a guard, which defines a

precondition. The satisfaction module serves to augment our knowledge with properties that can be

deduced from the premises, typically formatted to indicate that a concept models another one.

Magnolia is unusual as a programming language in that it does not have any built-in type or operation,

requiring that everything be defined explicitly. Magnolia is transpiled to other languages, and thus,

the actual types the programmer intends to use when running their program must be defined in the

target language.

2.3.2 Mathematics of Arrays

MoA [127; 130] is an algebra for representing and describing operations on arrays. The main feature

of the MoA formalism is the distinction between the DNF, which describes an array by its shape

together with a function that defines the value at every index, and the Operational Normal Form
(ONF), which describes it on the level of memory layout. The MoA’s ψ -calculus [130] provides a

formalism for index manipulation within an array, as well as techniques to reduce expressions of array

operations to the DNF and then transform them to ONF.

The ψ -calculus is based on a generalized array indexing function, ψ , which selects a partition of an

array by a multidimensional index. Because all the array operations in the MoA algebra are defined

using shapes, represented as a list of sizes, and ψ , the reduction semantics of ψ -calculus allow us to

reduce complex array computations to basic indexing/selection operations, which reduces the need

for any intermediate values.

By the ψ -correspondence theorem [130], we are able to transform an expression in DNF to its

equivalent ONF, which describes the result in terms of loops and controls, starts, strides and lengths
dependent on the chosen linear arrangement of the items, e.g. based on hardware requirements.
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Figure 2.2: Layer abstraction design; detailed environment designed for a PDE solver.

2.3.2.1 Motivation behind DNF and ONF

The goal behind the DNF and the ONF is to create an idealized foundation to define most — if not

all — domains that use tensors (arrays). Using MoA, all of the transformations to the DNF can be

derived from the definition of the ψ function and shapes.

This view has a long history [4] and, when augmented by the λ-calculus [25], provides an idealized

semantic core for all arrays [128; 133]. Array computations are very prevalent. A recent Dagstuhl

workshop [7; 8] reported the pervasiveness of tensors in the Internet of things, Machine Learning,

and Artificial Intelligence (e.g. Kronecker [131]) and Matrix Products [78]. Moreover, they dominate

science [79; 113] in general, especially signal processing [129; 135; 136; 144] and communications [134].

2.3.3 PDE Solver Framework

Figure 2.2 illustrates the design structured by layers for the PDE solver framework we describe. The first

abstraction layer defines the problem through the domain’s concepts. At this level, PDEs are expressed

using collective and continuous operations to relate the physical fields involved. Through the functions

encapsulating the numerical methods, the high-level continuous abstraction is mapped to a discrete

array-based layer. A Magnolia specification of the array algebra defined by the MoA formalism and the

ψ -calculus has been developed at this level. This algebra for arithmetic operations and permutations

over multi-dimensional arrays defines the problem through collective array operations in a layout

independent manner. At this point, array manipulation functions and operations may be defined in

the MoA formalism and reduced according to the ψ -reduction process. This process simplifies an

expression through transformational and compositional reduction properties: the rewriting rules.
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From the user’s array-abstracted expression we obtain an equivalent optimal and minimal semantic

form. Finally, the indexing algebra of the ψ -calculus relates the monolithic operations to elemental

operations, defining the code on processors and memory hierarchies through loops and controls. The

ψ -correspondence theorem is the theorem defining the mapping from the high-level abstracted array

expressions to the operational expressions, i.e. from a form involving Cartesian coordinates into one

involving linear arranged memory accesses.

2.4 MoA Transformation Rules

2.4.1 ψ-Calculus and Reduction to DNF

Multiarrays, or multidimensional arrays, have a shape given by a list of sizes ⟨s0 . . . sn−1⟩. For example,

a 6 by 8 matrixA has the shape ⟨6 8⟩. The index for a multiarray is given by a multi-index ⟨i0 . . . in−1⟩.

For position j of the multi-index, the index ij is in the range 0 ≤ ij < sj . This sets the vocabulary for

talking about multiarrays. In the following Magnolia code and in the rest of the paper, we will assume

that the following types are declared:

• type MA, for Multiarrays;

• type MS, for Multishapes;

• type MI, for Multi-indexes;

• type Int, for Integers.

All these types will have (mapped) arithmetic operators. Important functions on a multiarray are:

• the shape function ρ, which returns the shape of a multiarray, e.g. ρA = ⟨6 8⟩;

• the ψ function, which takes a submulti-index and returns a submultiarray, e.g. ⟨⟩ ψA = A and

ρ(⟨3⟩ ψ A) = ⟨8⟩ is the subarray at position 3;

• the rotate function θ, which rotates the multiarray: p θx A denotes the rotation of A by offset p
along axis x (rotate does not change the shape: ρ(p θx A) = ρA).

With respect to ψ , rotate works as:

⟨i0 . . . ix⟩ ψ (p θ0 A) =
〈
(i0 + p) mod s0 . . . ix

〉
ψ A

The rotate operation can be used to calculate, for each element, the sum of the elements in the adjacent

columns, (1 θ0 A) + ((−1) θ0 A), which is a multiarray with the same shape as A. Applying ψ to the

expression gives the following reduction:

⟨i0⟩ ψ ((1 θ0 A) + ((−1) θ0 A)) = ⟨(i0 + 1) mod s0⟩ ψ A + ⟨(i0 − 1) mod s0⟩ ψ A

These above MoA functions can be declared in Magnolia, with axioms stating their properties.

/** Extract the shape of an array. */
f u n c t i o n rho(a:MA) : MS;
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/** Extract subarray of an array. */
f u n c t i o n psi(a:MA, mi:MI) : MA;

/** Rotate distance p along axis. */
f u n c t i o n rotate(a:MA , axis:Int , p:Int) : MA ;

axiom rotateShape(a:MA , ax:Int , p:Int) {
var ra = rotate(a,ax,p);
a s s e r t rho(ra) == rho(a);

}

axiom rotatePsi(a:MA , ax:Int , p:Int , mi:MI) {
var ra = rotate(a,ax,p);
var ij = pmod(get(mi ,ax)+p,get(rho(a),ax));
var mj = change(mi ,ax,ij);
a s s e r t psi(ra,mi) == psi(a,mj);

}

axiom plusPsi(a:MA , b:MA, mi:MI)
guard rho(a) == rho(b) {
a s s e r t rho(a+b) == rho(a);
a s s e r t psi(a+b,mi) == psi(a,mi) + psi(b,mi);

}

Note how we are using ρ and ψ to define operations on multiarrays. The ρ operator keeps track of the

resulting shape. The ψ operator takes a partial multi-index and explains the effect of the operation on

the subarrays. In this way the ψ operator moves inward in the expression, pushing the computation

outwards towards subarrays and eventually to the element level.

The concatenation property for ψ -indexing is important for this,〈
j
〉
ψ (⟨i⟩ ψ A) ≡

〈
i j
〉
ψ A.

axiom psiConcatenation(ma:MA, q:MI, r:MI) {
var psiComp = psi( psi( ma,q ), r );
var psiCat = psi( ma , cat( q,r ) );
a s s e r t psiComp == psiCat;

}

The rules above, for rotation and arithmetic, show how ψ moves inwards towards the multiarray

variables. When this process stops, we have reached the DNF. All other multiarray functions have

then been removed and replaced by their ψ definitions. What is left to figure out and what we will

tentatively show in this paper is how to build the DNF.

Burrows et al [28] made the case that the operations defined above augmented with mapped arithmetic

constitute a sufficient basis to work with any FDM solver of PDE systems. It does not matter what

language the original expression comes from (Python, Matlab, Fortran, C, etc). With the syntax

removed and the tokens expressed as an AST, the DNF denotes the reduced semantic tree and could

be returned to the syntax of the originating language, with interpretation or compilation proceeding

as usual.
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2.4.2 Transformation Rules

The MoA defines many rewriting rules in order to reduce an expression to its DNF. Working with

those, we got the insight that the goal of the reduction is to move the call to ψ inwards to apply it as

early as possible in order to save computations, and that there are enough rules to allow us to move

ψ across any type of operation (Multiarray on Multiarray, scalar on Multiarray).

For the sake of this particular example, we limited ourselves to a subset of the transformation rules in

the MoA. We show that this constitutes a rewriting system that is canonical.

Let us first introduce the rules we are using. In the rules, the metavariables indexi, ui and sci
respectively denote multi-indexes, multiarrays and scalars. The metavariable op is used for mappable

binary operations such as ×, + and −, that take either a scalar and a multiarray or two multiarrays as

parameters and return a multiarray.

index ψ (ui op uj)
R1(index ψ ui) op (index ψ uj)

index ψ (sc op u)
R2sc op (index ψ u)

i ≤ k =⇒ ⟨sc0 . . . sci . . . sck⟩ ψ (sc θi u)
R3〈

sc0 . . . ((sci + sc) mod (ρu) [i]) . . . sck
〉
ψ u

Proving that a rewriting system is canonical requires proving two properties [112]:

1. the rewriting system must be confluent;

2. the rewriting system must be strongly normalizing (reducible in a finite number of steps).

For a rewriting system, being confluent is the same as having the Church-Rosser property [112], i.e. in

the case when reduction rules overlap so that a term can be rewritten in more than one way, the result

of applying any of the overlapping rules can be further reduced to the same result. If a term can be

derived into two different terms, the pair of the two derived terms is called a critical pair. Proving that

a rewriting system is confluent is equivalent to proving that every critical pair of the system yields the

same result for both of its terms.

Our rules above of the rewriting system can not generate any critical pair; the system is thus trivially

confluent.

Now, we must prove that the rewriting system is strongly normalizing: the system must yield an

irreducible expression in a finite number of steps for any expression. To that end, we assign a weight

w ∈ N to the expression such that w represents the "weight" of the expression tree. We define the

weight of the tree as the sum of the weight of each (index ψ) node. The weight of each one of these

nodes is equal to 3
h
, where h is the height of the node.
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i ψ

op

ui uj

op

i ψ

ui

i ψ

uj

Figure 2.3: Rule 1 and its application.

i ψ

op

sc u

op

sc i ψ

u

Figure 2.4: Rule 2 and its application.

Since N is bounded below by 0, we simply need to prove that the application of each rule results in w
strictly decreasing to prove that our rewriting system is strongly normalizing.

For each one of our three rules, we draw a pair of trees representing the corresponding starting

expression on the left and the resulting expression from applying the rule on the right. Then, we

verify that w strictly decreases from the tree on the left to the tree on the right. We call wl the weight

of the left tree and wr the weight of the right tree. Figures 2.3, 2.4 and 2.5 illustrate these trees.

In the three figures, we assume that the tree rooted in the i ψ node has height h′. Since the i ψ node

has a parameter, it is never a leaf and we have h′ > 0.

In Figure 2.3, the starting expression has the weight wl = 3
h′

. The resulting expression from applying

R1, however, has the weight wr = 2 × 3
h′−1 = 2

3
wl, which is less than wl. In Figure 2.4, the starting

expression has the weight wl = 3
h′

. The resulting expression from applying R2, however, has the

weight wr = 3
h′−1 = 1

3
wl, which is less than wl. In Figure 2.5, the starting expression has the weight

wl = 3
h′

. The resulting expression from applying R3, however, has the weight wr = 3
h′−1 = 1

3
wl,

which is less than wl.

Since w strictly decreases with every rewrite, the system is strongly normalizing. Since it is also

confluent, it is canonical.

2.4.3 Adapting to Hardware Architecture using ONF

Once we have reduced an expression to its DNF, if we know about the layout of the data it uses, we

can build its ONF. Assuming a row major layout, let us turn ⟨i⟩ ψ (1 θ0 A) + ((−1) θ0 A) into its

ONF.
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i ψ

θj

sc u

i′ψ

u

Figure 2.5: Rule 3 and its application.

To proceed further, we need to define three functions: γ, ι and rav.

• rav is short for Ravel, which denotes the flattening operation, both in APL and in MoA. It takes

a multiarray and reshapes it into a vector. We therefore use rav to deal with the representation

of the array in the memory of the computer.

• γ takes an index and a shape and returns the corresponding index in the flattened representation

of the array
2
. γ is not computable unless a specific memory layout is assumed, which is why

this decision has to be taken before building the ONF.

One can note that rav and γ are tightly connected in defining flattened array accesses as γ encodes

the layout while rav is defined in terms of γ. For FDM, it is important therefore to figure out

the right memory layout such that rotations are completed in an efficient fashion.

• ι is a unary function, which takes a natural number n as its parameter and returns a 1-D array

containing the range of natural numbers from 0 to n excluded. It is used to build strides of

indexes needed by the ONF.

With these operations defined, we can proceed. We first apply theψ -correspondence theorem followed

by applying γ.

∀i such that 0 ≤ i < 6,

⟨i⟩ ψ ((1 θ0 A) + (−1 θ0 A))
≡ (ravA) [γ(⟨(i + 1) mod 6⟩ ; ⟨6⟩) × 8 + ι8] + (ravA) [γ(⟨(i − 1) mod 6⟩ ; ⟨6⟩) × 8 + ι8]
≡ (ravA) [(⟨(i + 1) mod 6⟩) × 8 + ι8] + (ravA) [(⟨(i − 1) mod 6⟩) × 8 + ι8].

Secondly, we apply rav and turn ι into a loop to reach the following generic program:

∀j such that 0 ≤ j < 8,

A[((i + 1) mod 6) × 8 + j] + A[((i − 1) mod 6) × 8 + j].

The ONF is concerned with performance, and is where cost analysis and dimension lifting begins.

Regarding pure cost analysis, at this point, it is still possible to optimize this program: unfolding the

loops gives us the insight that the modulo operation is only ever useful on the 0
th

and 5
th

row. Thus,

by splitting the cases into those that require the modulo operation to be run and those that do not,

we may achieve better performance.

2
Here, only γ on rows is considered, but other γ functions exist
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Now imagine breaking the problem over 2 processors. Conceptually, the dimension is lifted. It is

important to note that the lifting may happen on any axis, especially in the current case where we are

dealing with rotations on a given axis. If we happen to apply dimension lifting on the axis on which

we are rotating, we may not be able to split the memory perfectly between the different computing

sites. This could require inter-process communication, or duplication of memory.

In this case, since we are rotating on the 0
th

axis, we pick axis 1 as the candidate to be lifted. The loop

on j is then split into 2 loops because we now view the 2-D resultant array as a 3-D arrayA′
with shape〈

6 2
8

2

〉
= ⟨6 2 4⟩ in which axis 1 corresponds to the number of processors. Therefore, we get:

∀i, j such that 0 ≤ i < 6, 0 ≤ j < 2,〈
i j
〉
ψ ((1 θ0 A′) + (−1 θ0 A′))

≡ (ravA′) [γ(
〈
((i + 1) mod 6) j

〉
; ⟨6 2⟩) × 4 + ι4]+

(ravA′) [γ(
〈
((i − 1) mod 6) j

〉
; ⟨6 2⟩) × 4 + ι4]

≡ (ravA′) [(((i + 1) mod 6) × 2 + j) × 4 + ι4]+
(ravA′) [(((i − 1) mod 6) × 2 + j) × 4 + ι4].

This reduces to the following generic program:

∀k such that 0 ≤ k < 4

A′[((i + 1) mod 6) × 4 × 2 + j × 4 + k] + A′[((i − 1) mod 6) × 4 × 2 + j × 4 + k].

As discussed above, there are other ways to achieve splitting of the problem across several computing

sites. In general, the size of the array and the cost of accessing different architectural components

drive the decision to break the problem up over processors, GPUs, threads, etc. [96; 98].

If a decision was made to break up the operations over different calculation units, the loop would

be the same but the cost of performing the operation would be different. This decision is therefore

completely cost-driven.

Continuing with dimension lifting, a choice might be made to use vector registers. This is, once again,

a cost-driven decision, which may however be decided upon statically, prior to execution.

If we were to break our problem up over several processors and using vector registers, it would

conceptually go from 2 dimensional to 4 dimensional, using indexing to access each resource. The

same process can be applied to hardware components [78], e.g. pipelines, memories, buffers, etc., to

achieve optimal throughput.

2.5 PDE Solver Test Case

Coordinate-free numerics [74; 89] is a high-level approach to writing solvers for PDEs. Solvers are

written using high-level operators on abstract tensors. Take for instance Burgers’ equation [27],

𝜕u⃗
𝜕t

+ u⃗ · ∇⃗u = ν∇2u⃗,

where vector u⃗ denotes a time and space varying velocity vector, t is time, and the scalar ν is a viscosity

coefficient. Burgers’ equation is a PDE involving temporal (
𝜕
𝜕t ) and spatial (∇) derivative operations.
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Applying an explicit second order Runge-Kutta time-integration method, the coordinate-free

time-integrated equation can be coded in Magnolia as follows.

procedure burgersTimestep(upd u:Tensor1V , obs dt:R,
obs nu:R) = {

var u_t = nu * laplacian(u) - dot(u,gradient(u));
var u_substep = u + dt/2 * u_t;
u_t = nu * laplacian(u_substep)

- dot(u_substep ,gradient(u_substep ));
u = u + dt * u_t;

};

Note how close this code follows the mathematical high-level formulation (2.5). We can lower

the abstraction level of this code by linking it with a library for 3D cartesian coordinates based on

continuous ringfields [90]. Next it can be linked with a library for finite difference methods choosing,

e.g., stencils

〈
− 1

2
, 0, 1

2

〉
and ⟨1,−2, 1⟩ for first and second order partial derivatives, respectively. This

takes us to a code at the MoA level, consisting of rotate and maps of arithmetic operations [28]. With

some reorganisation, we end up with the solver code below, expressed using MoA. The code calls the

snippet six times forming one full time integration step, one call for each of the three dimensions

of the problem times two due to the half-step in the time-integration. The variables dt,nu,dx are

scalar (floating point). The first two come from the code above, while dx was introducd by the finite

difference method. The variables u0,u1,u2 are multiarrays (3D each), for each of the components

of the 3D velocity vectorfield. These variables will be updated during the computation. The variables

c0,c1,c2,c3 and c4 are numeric constants. Three temporary multiarray variables v0,v1,v2 are

computed in the first three snippet calls, due to the half-step. They are then used in the last three

snippet calls to update u0,u1,u2.

procedure step(upd u0:MA, upd u1:MA, upd u2:MA,
obs nu:Float , obs dx:Float , obs dt:Float) {

var c0 = 0.5/dx;
var c1 = 1/dx/dx;
var c2 = 2/dx/dx;
var c3 = nu;
var c4 = dt/2;

var v0 = u0;
var v1 = u1;
var v2 = u2;
c a l l snippet(v0,u0 ,u0,u1 ,u2,c0 ,c1,c2,c3,c4);
c a l l snippet(v1,u1 ,u0,u1 ,u2,c0 ,c1,c2,c3,c4);
c a l l snippet(v2,u2 ,u0,u1 ,u2,c0 ,c1,c2,c3,c4);
c a l l snippet(u0,v0 ,v0,v1 ,v2,c0 ,c1,c2,c3,c4);
c a l l snippet(u1,v1 ,v0,v1 ,v2,c0 ,c1,c2,c3,c4);
c a l l snippet(u2,v2 ,v0,v1 ,v2,c0 ,c1,c2,c3,c4);

};

In the actual snippet code, d1a,d2a,d1b,d2b,d1c,d2c and shift_v are temporary multiarray
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variables. The shift function takes as first argument the multiarray being shifted, then the direction

of the shift, and lastly the distance for the rotational shift.

procedure snippet(upd u:MA, obs v:MA,
obs u0:MA, obs u1:MA, obs u2:MA,
obs c0:Float , obs c1:Float , obs c2:Float ,
obs c3:Float , obs c4:Float) {

var shift_v = shift ( v, 0, -1 );
var d1a = -c0 * shift_v;
var d2a = c1 * shift_v - c2 * u0;
shift_v = shift ( v, 0, 1 );
d1a = d1a + c0 * shift_v;
d2a = d2a + c1 * shift_v;

shift_v = shift ( v, 1, -1 );
var d1b = -c0 * shift_v;
var d2b = c1 * shift_v - c2 * u0;
shift_v = shift ( v, 1, 1 );
d1b = d1b + c0 * shift_v;
d2b = d2b + c1 * shift_v;

shift_v = shift ( v, 2, -1 );
var d1c = -c0 * shift_v;
var d2c = c1 * shift_v - c2 * u0;
shift_v = shift ( v, 2, 1 );
d1c = d1c + c0 * shift_v;
d2c = d2c + c1 * shift_v;

d1a = u0 * d1a + u1 * d1b + u2 * d1c;
d2a = d2a + d2b + d2c;
u = u + c4 * ( c3 * d2a - d1a);

};

In essence, snippet is computing 1/3 of the half-step of the PDE, using common calls to rotate to

compute one first and one second order partial derivative.

2.5.1 Reduction using MoA

Using the reduction rules defined in theψ -calculus, and turning our snippet code into an expression,

we can reduce the code to a DNF representation. In the following, we spell out some of the

transformation steps. The equation

snippet = u + c4 × (c3 × (c1 ×
((−1 θ0 v) + (1 θ0 v) + (−1 θ1 v) + (1 θ1 v) + (−1 θ2 v) + (1 θ2 v)) − 3c2u0) − c0 ×
(((1 θ0 v) − (−1 θ0 v)) u0 + ((1 θ1 v) − (−1 θ1 v)) u1 + ((1 θ2 v) − (−1 θ2 v)) u2))
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is a transcription of the snippet code above.

We use the notation θx to denote a rotation around the xth axis, represented in Magnolia by calls to

shift(multiarray, axis, offset).

The Magnolia implementation of the snippet makes heavy use of the multiarrays d1x and d2x, where

x denotes the axis around which the multiarray is rotated in lexicographical order (a corresponds to

the 0
th

axis, b to the 1
st

and so on). For the sake of easing into it, let us start by building a generic

DNF representation for d2x. All the steps will be detailed explicitly in order to gain insights on what

is needed and what is possible.

〈
i j k

〉
ψ d2x =

〈
i j k

〉
ψ (c1 × (−1 θx v) + c1 × (1 θx v) − c2 × u0)

(distribute ψ over +/-)

=
〈
i j k

〉
ψ (c1 × (−1 θx v)) +

〈
i j k

〉
ψ (c1 × (1 θx v)) −

〈
i j k

〉
ψ (c2 × u0)

(extract constant factors)

= c1 × (
〈
i j k

〉
ψ (−1 θx v)) + c1 × (

〈
i j k

〉
ψ (1 θx v)) − c2 × (

〈
i j k

〉
ψ u0)

(factorize by c1)

= c1 × (
〈
i j k

〉
ψ (−1 θx v) +

〈
i j k

〉
ψ (1 θx v)) − c2 × (

〈
i j k

〉
ψ u0).

Using the MoA’s concatenation of index property, we can now define ⟨ i ⟩ ψ d2x. However, this is

only reducible if x = 0. The reason is that to reduce an expression using a rotation on the xth axis

further, one needs to apply ψ with an index of at least x + 1 elements. Therefore, to reduce d21, we

need an index vector with at least 2 elements, while we need a total index containing 3 elements to

reduce d22. With that in mind, we can try to reduce d21:

〈
i j
〉
ψ d21 = c1 × (

〈
i j
〉
ψ (−1 θ1 v) +

〈
i j
〉
ψ (1 θ1 v)) − c2 × (

〈
i j
〉
ψ u0)

(reducing rotation)

= c1 × (
〈
i ((j − 1) mod s1)

〉
ψ v +

〈
i ((j + 1) mod s1)

〉
ψ v) − c2 × (

〈
i j
〉
ψ u0).

For x = 2, we apply the same process with a total index:

〈
i j k

〉
ψ d22 = c1 × (

〈
i j k

〉
ψ (−1 θ2 v) +

〈
i j k

〉
ψ (1 θ2 v)) − c2 × (

〈
i j k

〉
ψ u0)

(reducing rotation)

= c1 × (
〈
i j ((k − 1) mod s2)

〉
ψ v +

〈
i j ((k + 1) mod s2)

〉
ψ v) −

c2 × (
〈
i j k

〉
ψ u0)
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Now we can define the ONF of the expression, which is the form we will use in our actual code. Let’s

define it for d21:

(rav d21) [γ(
〈
i j
〉
; ⟨s0 s1⟩) × s2 + ιs2] = c1 × ((rav v) [γ(

〈
i ((j − 1) mod s1)

〉
; ⟨s0 s1⟩) × s2 + ιs2] +

(rav v) [γ(
〈
i ((j + 1) mod s1)

〉
; ⟨s0 s1⟩) × s2 + ιs2])−

c2 × (rav u0) [γ(
〈
i j
〉
; ⟨s0 s1⟩) × s2 + ιs2]

(apply γ on both sides)

(rav d21) [(i × s1 × s2 + j × s2 + ιs2] = c1 × ((rav v) [i × s1 × s2 + ((j − 1) mod s1) × s2 + ιs2] +
(rav v) [i × s1 × s2 + ((j + 1) mod s1) × s2 + ιs2]) −

c2 × (rav u0) [i × s1 × s2 + j × s2 + ιs2].

The optimization can be done similarly for d22. The fact that d22 can only be reduced using a total

index means that snippet too can only be fully reduced using a total index.

〈
i j k

〉
ψ snippet

=
〈
i j k

〉
ψ (u + c4 × (c3 × (c1 × ((−1 θ0 v) + (1 θ0 v) + (−1 θ1 v) + (1 θ1 v) + (−1 θ2 v) +
(1 θ2 v)) − 3c2u0) − c0(((1 θ0 v) − (−1 θ0 v)) u0 + ((1 θ1 v) − (−1 θ1 v)) u1 +
((1 θ2 v) + (−1 θ2 v)) u2)))

(distribute ψ over + and -)

=
〈
i j k

〉
ψ u +〈

i j k
〉
ψ (c4 × (c3 × (c1 × ((−1 θ0 v) + (1 θ0 v) + (−1 θ1 v) + (1 θ1 v) + (−1 θ2 v) +
(1 θ2 v)) − 3c2u0))) −〈

i j k
〉
ψ (c0 × (((1 θ0 v) − (−1 θ0 v)) u0 + ((1 θ1 v) − (−1 θ1 v)) u1 + ((1 θ2 v) −
(−1 θ2 v)) u2))

(extract constant c4, c3, and c0)

=
〈
i j k

〉
ψ u + c4 × (c3×

(
〈
i j k

〉
ψ (c1 × ((−1 θ0 v) + (1 θ0 v) + (−1 θ1 v) + (1 θ1 v) + (−1 θ2 v) + (1 θ2 v)) −
3c2u0)) − c0 ×

(
〈
i j k

〉
ψ (((1 θ0 v) − (−1 θ0 v)) u0 + ((1 θ1 v) − (−1 θ1 v)) u1 + ((1 θ2 v) −
(−1 θ2 v)) u2)))

(distribute ψ over +, ×, and -)

=
〈
i j k

〉
ψ u + c4 × (c3 ×

(
〈
i j k

〉
ψ (c1 × ((−1 θ0 v) + (1 θ0 v) + (−1 θ1 v) + (1 θ1 v) + (−1 θ2 v) + (1 θ2 v))) −〈

i j k
〉
ψ (3c2u0)) − c0 × (

〈
i j k

〉
ψ ((1 θ0 v) − (−1 θ0 v)) ×

〈
i j k

〉
ψ u0 +
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〈
i j k

〉
ψ ((1 θ1 v) − (−1 θ1 v)) ×

〈
i j k

〉
ψ u1 +〈

i j k
〉
ψ ((1 θ2 v) − (−1 θ2 v)) ×

〈
i j k

〉
ψ u2))

(extract constant factors c1 and 3 × c2)

=
〈
i j k

〉
ψ u + c4 × (c3 × (c1 ×

(
〈
i j k

〉
ψ ((−1 θ0 v) + (1 θ0 v) + (−1 θ1 v) + (1 θ1 v) + (−1 θ2 v) + (1 θ2 v))) − 3c2

(
〈
i j k

〉
ψ u0)) − c0 × (

〈
i j k

〉
ψ ((1 θ0 v) − (−1 θ0 v)) ×

〈
i j k

〉
ψ u0 +〈

i j k
〉
ψ ((1 θ1 v) − (−1 θ1 v)) ×

〈
i j k

〉
ψ u1 +〈

i j k
〉
ψ ((1 θ2 v) − (−1 θ2 v)) ×

〈
i j k

〉
ψ u2))

(distribute ψ over + and -)

=
〈
i j k

〉
ψ u + c4 × (c3 × (c1 ×

(
〈
i j k

〉
ψ (−1 θ0 v) +

〈
i j k

〉
ψ (1 θ0 v) +

〈
i j k

〉
ψ (−1 θ1 v) +〈

i j k
〉
ψ (1 θ1 v) +

〈
i j k

〉
ψ (−1 θ2 v) +

〈
i j k

〉
ψ (1 θ2 v)) − 3c2

(
〈
i j k

〉
ψ u0)) − c0 × ((

〈
i j k

〉
ψ (1 θ0 v) −

〈
i j k

〉
ψ (−1 θ0 v)) ×

〈
i j k

〉
ψ u0 +

(
〈
i j k

〉
ψ (1 θ1 v) −

〈
i j k

〉
ψ (−1 θ1 v)) ×

〈
i j k

〉
ψ u1 +

(
〈
i j k

〉
ψ (1 θ2 v) −

〈
i j k

〉
ψ (−1 θ2 v)) ×

〈
i j k

〉
ψ u2))

(translate rotations into indexing)

=
〈
i j k

〉
ψ u + c4 × (c3 × (c1 ×

(
〈
((i − 1) mod s0) j k

〉
ψ v +

〈
((i + 1) mod s0) j k

〉
ψ v +〈

i ((j − 1) mod s1) k
〉
ψ v +

〈
i ((j + 1) mod s1) k

〉
ψ v +〈

i j ((k − 1) mod s2)
〉
ψ v +

〈
i j ((k + 1) mod s2)

〉
ψ v) − 3c2(

〈
i j k

〉
ψ u0)) − c0 ×

((
〈
((i + 1) mod s0) j k

〉
ψ v −

〈
((i − 1) mod s0) j k

〉
ψ v) ×

〈
i j k

〉
ψ u0 +

(
〈
i ((j + 1) mod s1) k

〉
ψ v −

〈
i ((j − 1) mod s1) k

〉
ψ v) ×

〈
i j k

〉
ψ u1 +

(
〈
i j ((k + 1) mod s2)

〉
ψ v −

〈
i j ((k − 1) mod s2)

〉
ψ v) ×

〈
i j k

〉
ψ u2))

In Magnolia, the DNF can be captured as such:

procedure snippetDNF(
upd u:MA, obs v:MA, obs u0:MA, obs u1:MA, obs u2:MA,
obs c0:Float , obs c1:Float , obs c2:Float , obs c3:Float ,
obs c4:Float , obs mi:MI) {

var s0 = shape0(v);
var s1 = shape1(v);
var s2 = shape2(v);
u = psi(mi ,u) + c4*(c3*(c1*(

psi(mod0(mi -d0,s0),v) + psi(mod0(mi+d0 ,s0),v) +
psi(mod1(mi -d1,s1),v) + psi(mod1(mi+d1 ,s1),v) +
psi(mod2(mi -d2,s2),v) + psi(mod2(mi+d2 ,s2),v)) -
3*c2* psi(mi ,u0)) - c0 *
((psi(mod0(mi+d0,s0),v) - psi(mod0(mi-d0,s0),v)) *
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psi(mi,u0) +
(psi(mod1(mi+d1,s1),v) - psi(mod1(mi -d1,s1),v)) *
psi(mi,u1) +
(psi(mod2(mi+d2,s2),v) - psi(mod2(mi -d2,s2),v)) *
psi(mi,u2)));

}

Now, we can transform snippet into its ONF form:

(rav snippet) [γ(
〈
i j k

〉
; ⟨s0 s1 s2⟩)]

= (rav u) [γ(
〈
i j k

〉
; ⟨s0 s1 s2⟩)] + c4 × (c3 × (c1 ×

(rav v) [γ(
〈
((i − 1) mod s0) j k

〉
; ⟨s0 s1 s2⟩)] +

(rav v) [γ(
〈
((i + 1) mod s0) j k

〉
; ⟨s0 s1 s2⟩)] +

(rav v) [γ(
〈
i ((j − 1) mod s1) k

〉
; ⟨s0 s1 s2⟩)] +

(rav v) [γ(
〈
i ((j + 1) mod s1) k

〉
; ⟨s0 s1 s2⟩)] +

(rav v) [γ(
〈
i j ((k − 1) mod s2)

〉
; ⟨s0 s1 s2⟩)] +

(rav v) [γ(
〈
i j ((k + 1) mod s2)

〉
; ⟨s0 s1 s2⟩)]) −

3c2(rav u) [γ(
〈
i j k

〉
; ⟨s0 s1 s2⟩)] − c0 ×

(((rav v) [γ(
〈
((i + 1) mod s0) j k

〉
; ⟨s0 s1 s2⟩)] −

(rav v) [γ(
〈
((i − 1) mod s0) j k

〉
; ⟨s0 s1 s2⟩)]) × (rav u0) [γ(

〈
i j k

〉
; ⟨s0 s1 s2⟩)] +

((rav v) [γ(
〈
i ((j + 1) mod s1) k

〉
; ⟨s0 s1 s2⟩)] −

(rav v) [γ(
〈
i ((j − 1) mod s1) k

〉
; ⟨s0 s1 s2⟩)]) × (rav u1) [γ(

〈
i j k

〉
; ⟨s0 s1 s2⟩)] +

((rav v) [γ(
〈
i j ((k + 1) mod s2)

〉
; ⟨s0 s1 s2⟩)] −

(rav v) [γ(
〈
i j ((k − 1) mod s2)

〉
; ⟨s0 s1 s2⟩)]) × (rav u2) [γ(

〈
i j k

〉
; ⟨s0 s1 s2⟩)]))

This is how far we can go without specific information about the layout of the data in the memory

and the architecture. The current form is still fully generic, with γ and rav parameterized over the

layout. The Magnolia implementation of this generic form is as follows:

procedure moaONF (
upd u:MA, obs v:MA, obs u0:MA, obs u1:MA, obs u2:MA,
obs c0:Float , obs c1:Float , obs c2:Float , obs c3:Float ,
obs c4:Float , obs mi:MI) {

var s0 = shape0(v);
var s1 = shape1(v);
var s2 = shape2(v);

var newu = get(rav(u),gamma(mi,s)) + c4*(c3*(c1*
get(rav(v),gamma(mod0(mi -d0,s0),s)) +
get(rav(v),gamma(mod0(mi+d0,s0),s)) +
get(rav(v),gamma(mod1(mi -d1,s1),s)) +
get(rav(v),gamma(mod1(mi+d1,s1),s)) +
get(rav(v),gamma(mod2(mi -d2,s2),s)) +
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get(rav(v),gamma(mod2(mi+d2,s2),s))) -
3 * c_2 get(rav(u),gamma(mi ,s)) - c0 *
((get(rav(v),gamma(mod0(mi+d0 ,s0),s)) -
get(rav(v),gamma(mod0(mi-d0,s0),s))) *
get(rav(u0),gamma(mi,s)) +
(get(rav(v),gamma(mod1(mi+d1,s1),s)) -
get(rav(v),gamma(mod1(mi-d1,s1),s))) *
get(rav(u_1),gamma(mi,s)) +
(get(rav(v),gamma(mod2(mi+d2,s2),s)) -
get(rav(v),gamma(mod2(mi-d2,s2),s))) *
get(rav(u2),gamma(mi,s))));

set(rav(u),gamma(mi ,s),newu);
}

In Section 2.4.3, we defined the layout of the data as row-major. Thus we can optimize the expression

further by expanding the calls to γ:

(rav snippet) [i × s1 × s2 + j × s2 + k]
= (rav u) [i × s1 × s2 + j × s2 + k] + c4 × (c3 × (c1 ×
(rav v) [((i − 1) mod s0) × s1 × s2 + j × s2 + k] +
(rav v) [((i + 1) mod s0) × s1 × s2 + j × s2 + k] +
(rav v) [i × s1 × s2 + ((j − 1) mod s1) × s2 + k] +
(rav v) [i × s1 × s2 + ((j + 1) mod s1) × s2 + k] +
(rav v) [i × s1 × s2 + j × s2 + ((k − 1) mod s2)] +
(rav v) [i × s1 × s2 + j × s2 + ((k + 1) mod s2)]) −
3c2(rav u) [i × s1 × s2 + j × s2 + k] − c0 ×
(((rav v) [((i + 1) mod s0) × s1 × s2 + j × s2 + k] −
(rav v) [((i − 1) mod s0) × s1 × s2 + j × s2 + k]) × (rav u0) [i × s1 × s2 + j × s2 + k] +
((rav v) [i × s1 × s2 + ((j + 1) mod s1) × s2 + k] −
(rav v) [i × s1 × s2 + ((j − 1) mod s1) × s2 + k]) × (rav u1) [i × s1 × s2 + j × s2 + k] +
((rav v) [i × s1 × s2 + j × s2 + ((k + 1) mod s2)] −
(rav v) [i × s1 × s2 + j × s2 + ((k − 1) mod s2)]) × (rav u2) [i × s1 × s2 + j × s2 + k]))

At this point, as indicated in section 4.3, we can convert our expression into several subexpressions

in order to distinguish the general case from anomalies (i.e cases that require the modulo operation

to be applied on any axis). This general case is in ONF and we can use it for code generation or to

perform additional transformations, specifically dimension lifting.

2.6 Conclusion

Through the full analysis of an FDM solver of a PDE, we were able to extract a rewriting subsystem

most relevant to our specific problem out of the rewriting rules provided by the ψ -calculus. Then, we
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proved that this particular set of rewriting rules constitutes a canonical rewriting system, getting one

step closer to fully automating the optimization of array computations using the MoA formalism.

We are now working on the implementation of our optimizations to measure their impact on the

performance of the solver for different architectures, and can report results in the near future.

By working out an approach from high level coordinate-free PDEs down to preparing for data layout

and code optimization using MoA as an intermediate layer through the full exploration of a relevant

example, we pave the way for building similar systems for any problem of the same category. High-

efficiency code can thus easily be explored and generated from a unique high-level abstraction and

potentially different implementation algorithms, layouts of data or hardware architectures.

Because tensors dominate a significant portion of science, future work may focus on figuring out what

properties can be deduced from the complete ψ -calculus rewriting system with a goal to extend this

currently problem-oriented approach towards a fully automated problem-independent optimization

tool based on MoA.

Given the scale of the ecosystem impacted by this kind of work, such prospects are very attractive.
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3.1 Introduction

In the past few decades, a large variety of high-performance computing (HPC) architectures

has appeared. On the path towards exascale computing, we can expect to see a similar medley

of architectures. Software for HPC therefore needs to be highly adaptable. This includes

adjusting to, among other things, different memory hierarchies and changing intra- and interprocess

communication hardware.

This paper explores the Mathematics of Arrays (MoA) formalism [127] as a tool for optimizing array

codes for different hardware architectures. We have previously established a means of transforming

stencil-based array code to Denotational Normal Form (DNF) [36]—irreducible expressions in the

language of MoA. Given knowledge of the targeted parallel distribution and memory layout, one can

transform a DNF expression to an architecture-specific normal form, the Operational Normal Form
(ONF), which we describe in Section 3.4.

ONF transformations include the dimension lifting operation for reshaping an array by splitting a

given axis of its shape into two or more dimensions. This operation can conveniently divide an array

over different computation loci (whether they be threads, cores, or even systems).

The contribution of this paper is a formalization of concepts of MoA’s ONF and the extension of

MoA with new operations to deal with padding of data. With these operations, MoA provides a

framework for transforming regular array stencil code to distributed code with halo zones — also

referred to as ghost cells in the literature [110]. As an example, the paper shows how MoA and its

ONF help in the search for more efficient stencil-based array computations in a Partial Differential

Equation (PDE) solver based on Finite Difference Methods (FDMs). We obtain a 10% performance

improvement with changes easily expressible in MoA.

We have started to implement MoA with our extensions in Coq, so that the formal claims we make,

e.g., about the ONF transformations can be machine-checked. This effort is at an early stage; the

proofs can be found in the repository at https://github.com/mathematics-of-arrays/mo
a-formalization.

The paper is organised as follows. Next is a motivation section, then a discussion of related work.

Section 3.4 covers the required prerequisites in MoA and previous work on the DNF layer. Section 3.5

discusses dimension lifting, and defines and explains padding and data layout. We then briefly report

on some experiments and conclude in Section 3.7.

3.2 Motivation

To motivate our work, we ran the PDE solver we presented in [36] on a set of experimental architectures

and implemented some of the ONF transformations on the code. Table 3.1 shows a matrix where each

column corresponds to a different version of the solver and each row to different hardware. The table

makes it plain that different architectures benefit from different transformations. While on CPU 1

the dimension lifting on 0
th axis and tiled memory approach performs best, on CPU 3 it is clearly

inefficient compared to the other dimension lifting-based scenarios.

The hard to predict variations in performance, and the sheer number of different memory layouts,

https://github.com/mathematics-of-arrays/moa-formalization
https://github.com/mathematics-of-arrays/moa-formalization
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Table 3.1: Execution time (in seconds) of a PDE solver C implementation compiled with GCC

8.2.0 depending on hardware and dimension lifting (DL) parameters. The arrays involved in the

computation are cubic, and each axis has length 512. The gray background marks the fastest version(s)

of the solver for each row. The labels are as follows: S: Single core (no DL); MDL: Multicore (DL

on 0
th

dimension); MDLSL: Multicore (DL on (n − 2)th
dimension); MDLTM: Multicore (DL on

0
th

dimension using tiled memory); CPU 1: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz; CPU

2: AMD EPYC 7601 32-Core; CPU 3: Intel(R) Xeon(R) Silver 4112 CPU @ 2.60GHz; and CPU 4:

ThunderX2 CN9980. The code of the experiments is at https://github.com/mathematics-o
f-arrays/padding-in-the-mathematics-of-arrays.

S MDL MDLSL MDLTM

CPU 1 225.74 70.96 66.66 61.81

CPU 2 299.42 59.16 68.14 68.70

CPU 3 172.71 85.97 85.59 117.11

CPU 4 660.53 85.06 72.80 77.86

motivate a vehicle for easy exploration of codes that implement different memory layouts. If exploring

different layouts is made easy, programmers can obtain close-to-optimal performance for different

architectures with little effort.

In the following, we demonstrate that MoA, with our extension of operations for padding, provides

the required level of expressivity to accomplish just that.

3.3 Related

Ken Iverson introduced whole-array operations in the APL programming language [100]. Building

on further explorations by Abrams [4], Mullin created the Mathematics of Arrays formalism [127]

in order to address various shortcomings of the universal algebra underlying APL (most notably

the lack of a calculus for indexing). MoA is intended to serve as a foundation for exploring and

optimizing array/tensor operations. Mullin further explored MoA through case studies of scientific

algorithms, including QR Decomposition [144] and Fast Fourier Transforms (FFTs) [98]. The latter

paper introduced the dimension lifting operation, crucial to this work.

Burrows et al. identified an array API for FDM solvers of PDEs [28]. We explored the MoA fragment

corresponding to this API and concluded that stencil computations can systematically be reduced

to MoA’s DNF [36]. Hagedorn et al. [81] also looked into optimizing stencil computations, and

augmented LIFT [167] with the same operations.

Artjom Šinkarovs studied automatic data layout transformations using a type-based approach

and demonstrated that carefully chosen data layouts can greatly improve program vectorisation,

therefore leading to significant performance improvements [182]. Šinkarovs et al. also implemented a

Convolutional Neural Network in APL [176]—a setting in which stencil-related padding operations

are relevant. Šinkarovs’s formalization in Agda of multiarrays à la APL in Agda (see https:
//github.com/ashinkarov/agda-array) uses the latter as an example.

https://github.com/mathematics-of-arrays/padding-in-the-mathematics-of-arrays
https://github.com/mathematics-of-arrays/padding-in-the-mathematics-of-arrays
https://github.com/ashinkarov/agda-array
https://github.com/ashinkarov/agda-array
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3.4 MoA Background and Notation

We give a short introduction to the MoA algebra for representing and describing operations on arrays.

For more details, we refer the reader to the relevant works in our bibliography [6; 127; 130].

MoA defines the ψ -calculus, a set of rules for manipulating array shapes and expressions. By

systematically applying a set of terminating rewriting rules, we can transform an array expression to a

single array with standard layout and operations on the array elements, the Denotational Normal

Form (DNF). DNF can further be transformed into a corresponding Operational Normal Form

(ONF), which represents array access patterns in terms of start, stride and length. Together with

dimension lifting, this lets us reorganize the memory layout and data access patterns, and to thus take

into account distribution of data and memory hierarchies, data locality, etc., a flexiblity needed for

current and future hardware architectures.

The dimension of an array A corresponds to the number of axes in A and is denoted by dim(A). We

define the shape of an n-dimensional arrayA as a vector ⟨s0 , . . . , sn−1⟩ containing at index i the length

of ith
axis in A. The size of an array is the number of elements it contains, i.e. size(A) = ∏n−1

i=0 si; we

write this product of shape s also as Πs.

We adopt the notation Fin n for the finite set of natural numbers {0, . . . , n − 1}. An index into A is a

vector ⟨i0 , . . . , ik⟩ of length k + 1 with k ∈ Fin (dim(A)) such that ij ∈ Fin sj for all j ∈ Fin k. If

dim(A) = k + 1, we say the index is a total index. The indexing function that defines the content of

the array at a given index differs depending on the abstraction layer we consider.

For example, a 2-dimensional array M with shape ⟨2, 3⟩ contains 6 elements and corresponds to a

2-by-3 matrix. We represent such an array using the row-major notation

M =

(
e0,0 e0,1 e0,2
e1,0 e1,1 e1,2

)
,

where ei,j is the element of M at total index

〈
i j
〉

.

Scalars are represented as 0-dimensional arrays, i.e. arrays with shape ⟨⟩ and size 1. Empty arrays have

size 0, i.e. at least one of their shape components is 0.

3.4.1 Relevant MoA Operations at the DNF level

In the following, A is an n-dimensional array with shape ⟨s0 , . . . , sn−1⟩. The rest of the paper makes

use of the following core operations at the DNF level:

• the shape function ρ, that returns the shape of an array, e.g. ρ(M) = ⟨2, 3⟩, where M is the

2-by-3 array from the example above;

• the indexing function ψ , that takes an index into A and returns the subarray at the indexed

position. Thus, ⟨⟩ ψ A = A holds. For our example, we have

⟨1⟩ ψ M =
(
e1,0 e1,1 e1,2

)
and ρ(⟨1⟩ ψ M) = ⟨3⟩;
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When A is 1-dimensional and therefore has shape ⟨s0⟩, we also use the notation

A[u],

where the index u is either

– a scalar u ∈ Fin s0, and A[u] is the element at index u in A; or

– a vector of k indices ⟨u0 , . . . , uk−1⟩ such that ∀j ∈ Fin k, uj ∈ Fin s0, and A[u] is the

vector whose jth
element is the uj th

element in A;

• the reshaping function reshape, that takes a shape s with Πs = Πρ(A), and produces an array

with the same size and elements as A but with shape s, i.e. ρ(reshape(s, A)) = s. Note that

reshape does not move data around in A;

• a slicing function △ (read "take"), that takes a positive (respectively negative) integer t such that

|t | ∈ Fin (s0 + 1) and returns a slice containing the first (respectively last) |t | subarrays of A.

Thus,

ρ(△(t, A)) = ⟨|t | , s1 , . . . , sn−1⟩
and ∀i ∈ Fin |t |,

⟨i⟩ ψ △(t, A) =
{
⟨i⟩ ψ A if t ≥ 0

⟨s0 − |t | + i⟩ ψ A otherwise;

• a slicing function ▽ (read "drop"), that takes a positive (respectively negative) integer t such

that |t | ∈ Fin (s0 + 1) and returns a slice containing the last (respectively first) s0 − |t | subarrays

of A. Thus,

ρ(▽(t, A)) = ⟨s0 − |t | , s1 , . . . , sn−1⟩
and ∀i ∈ Fin (s0 − |t |),

⟨i⟩ ψ ▽(t, A) =
{
⟨i + t⟩ ψ A if t ≥ 0

⟨i⟩ ψ A otherwise.

• the concatenation function cat, that takes an additional array B with shape

〈
sB
0
, s1 , . . . , sn−1

〉
such that

ρ(cat(A, B)) =
〈
s0 + sB0 , s1 , . . . , sn−1

〉
and

⟨i⟩ ψ cat(A, B) =
{
⟨i⟩ ψ A if i < s0
⟨i − s0⟩ ψ B otherwise

hold. In order to simplify notation along the paper, we relax the definition of cat to assume

its second argument is automatically reshaped to fit the shape requirements. We use this only

in cases when the required reshape operation does not require computing a non-trivial shape

argument.

∀t ∈ Fin s0, cat(△(t, A),▽(t, A)) = A holds;

• the family of rotation functions θj that take a positive (respectively negative) integer o and

rotate A by |o| elements to the "right" (respectively left) along axis j. Formally, we have

∀j ∈ Fin (dim(A)), o ∈ {o ∈ Z : |o| ∈ Fin sj},

ρ(o θj A) = ρ(A)
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and

i ψ (o θj A) =
{
cat(△(−o, i ψ A),▽(−o, i ψ A)) if 0 ≤ o
cat(▽(o, i ψ A),△(o, i ψ A)) otherwise;

where i is a partial index of length j into A.

3.4.2 Relevant MoA Operations at the ONF level

The following core operations are used throughout the paper at the ONF level:

• the family of dimension lifting operations liftj that take two natural numbers d, qwith (d, q) ∈
{(d, q) : d · q = sj} and split the jth

axis of A into two shape components. More specifically,

liftj (d, q, A) = reshape
(〈
s0 , . . . , sj−1 , d , q , . . . , sn−1

〉
, A

)
holds. Dimension lifting is syntactic sugar for a specific reshaping operation. The intent is

to use dimension lifting when the goal is to distribute computations below axis j across d
computation loci. To the best of the knowledge of the authors, it is the first time a formal

definition for dimension lifting in MoA is stated in the literature. We later give a formal

definition for dimension lifting compatible with padding operations in Definition 10;

• the flattening function rav, which flattens an array into a unidimensional array, i.e.

ravA = reshape(
〈
Π(ρ(A))

〉
, A).

We use rav to transport A into its corresponding linear representation in memory;

• the mapping function γ that takes a shape s with Πs = Π(ρ(A)) and a total index into s and

produces the corresponding index into ravA. Since ravA is 1-dimensional, the equation

i ψ A = (ravA) [γ(ρ(A), i)]

holds for any total index i into A. Intuitively, γ transforms indexing operations into an abstract

array representation of A into one that takes into account its concrete memory layout;

• the range function ι that given a positive integer n returns a 1-dimensional array containing the

elements of Fin n in ascending order.

We recall informally the ψ -correspondence theorem [130]: ∀k ∈ Fin (dim(A)) and an index i of

length k into A,

i ψ A = (ravA) [γ(i, ⟨s0 , . . . , sk−1⟩) · stride + ι stride]

holds, with stride = Π(⟨sk , . . . , sn−1⟩), and + is the elementwise addition operation with implicit

broadcast semantics.

Formal definitions for the operations described above can be found in Mullin’s original work [127].
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3.5 Memory Layout in the MoA

In the rest of the paper, we use a row-major memory layout. Our running example will be the DNF

expression

expr = ((1 θ0 Arr) + (−1 θ0 Arr))
where + is the elementwise addition operator. For the rest of the paper, we set

Arr =

©­­­­­­­«

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

ª®®®®®®®¬
,

where ρ(Arr) = ⟨6, 4⟩. More illustratively,

expr =

©­­­­­­­«

21 22 23 24

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

ª®®®®®®®¬
+

©­­­­­­­«

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

1 2 3 4

ª®®®®®®®¬
=

©­­­­­­­«

26 28 30 32

10 12 14 16

18 20 22 24

26 28 30 32

34 36 38 40

18 20 22 24

ª®®®®®®®¬
.

The array expression expr is representative of one step of a PDE solver, as considered in the authors’

previous work [36] and by Burrows et al. [28].

We can use the ψ -correspondence theorem to transform expr into the following ONF expression:

∀i ∈ Fin 6, ⟨i⟩ ψ ((1 θ0 Arr) + (−1 θ0 Arr))
= (rav Arr) [γ(⟨(i + 1) mod 6⟩ , ⟨6⟩) · 4 + ι4] +
(rav Arr) [γ(⟨(i − 1) mod 6⟩ , ⟨6⟩) · 4 + ι4].

We follow up by unfolding γ:

= (rav Arr) [((i + 1) mod 6) · 4 + ι4] +
(rav Arr) [((i − 1) mod 6) · 4 + ι4].

By unfolding rav and turning ι into a loop we get the following generic program:

∀i ∈ Fin 6, j ∈ Fin 4,
(rav Arr) [((i + 1) mod 6) · 4 + j] + (rav Arr) [((i − 1) mod 6) · 4 + j].

The above program is written assuming, implicitly, that the target architecture is a single-core processor.

We can use dimension lifting to establish a correspondence between the shape of the array and a

different underlying hardware architecture.

Consider an architecture that consists of two single-core processors. We apply dimension lifting on

axis 1 of Arr, to create the array

Arr′ = lift1(2, 2, A) = reshape (⟨6, 2, 2⟩ , A)
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where axis 1 corresponds to the number of available cores. We get the following:

∀i ∈ Fin 6, j ∈ Fin 2,〈
i, j
〉
ψ ((1 θ0 Arr′) + (−1 θ0 Arr′))

= (rav Arr′) [γ(
〈
((i + 1) mod 6) j

〉
, ⟨6, 2⟩) · 2 + ι2] +

(rav Arr′) [γ(
〈
((i − 1) mod 6) j

〉
, ⟨6, 2⟩) · 2 + ι2]

= (rav Arr′) [(((i + 1) mod 6) · 2 + j) · 2 + ι2] +
(rav Arr′) [(((i − 1) mod 6) · 2 + j) · 2 + ι2].

This reduces to the following generic program:

∀i ∈ Fin 6, j ∈ Fin 2, k ∈ Fin 2,
(rav Arr′) [((i + 1) mod 6) · 4 · 2 + j · 2 + k] +
(rav Arr′) [((i − 1) mod 6) · 4 · 2 + j · 2 + k].

The programs before and after dimension lifting above are equivalent except for their different looping

structures—they are adapted to two different hardware architectures.

Dimension lifting can be carried out across any axis (or on several axes simultaneously). The choice of

axes should be guided by both the memory hierarchy and the operations involved in the expression.

For example, the rotations above are applied on axis 0; dimension lifting on this axis would not allow

perfectly splitting the memory between the two processors.

The example involves a modulo operation on the index. This is an expensive operation even on

modern hardware [117]. We describe below a circular padding operation on DNF expressions that

introduces data redundancy into arrays.

In Section 3.5.1, we define circular padding operations and observe how they eliminate the need for

modulo operations in a single-core setting for our running example. In Section 3.5.2 we generalize

these operations and put them to work to reduce the need for inter-process communication in a

distributed computation setting for our running example.

3.5.1 Case of One Core and Constant Memory Access Cost

Padding an array is prepending or appending data to it. For our purposes, we want these data to

be specific slices of the array itself. Here we introduce notation to define the circular prepending

(referred to as left padding) and circular appending (referred to as right padding) operations in MoA.

Notation 1. Given an n-dimensional arrayA and an integer i ∈ Fin n, we use the shorthand notation

Ki to represent the index of length i into A whose jth
component is bound to variable kj , i.e.

Ki = ⟨k0 , . . . , ki−1⟩ .

To further simplify the notation of indexing, we also introduce the shorthand notation

AKi = A⟨k0 , ... , ki−1⟩ = ⟨k0 , . . . , ki−1⟩ ψ A.
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Definition 2. Let A be an n-dimensional array with shape ⟨s0 , . . . , sn−1⟩. We can specify an n-

dimensional slice B of A by annotating each component si of its shape with the (inclusive) beginning

of the slice bi ∈ Fin (si + 1) and the (exclusive) end ei ∈ Fin (si + 1), with bi ≤ ei. Concretely, we have

ρ(B) = ⟨e0 − b0 , . . . , en−1 − bn−1⟩

and

B⟨k0 , ... , kn−1⟩ = A⟨k0+b0 , ... , kn−1+bn−1⟩ .

In the rest of this section, we attach a slice annotation to each of our arrays. We write

ρann(A) =
〈
sb0,e0
0

, . . . , sbn−1,en−1n−1

〉
the projection function that extracts both the shape and the slice annotation from an array.

We care about making a difference between padded and unpadded arrays. In the following, it is assumed

that if A is unpadded, it carries the slice annotation such that ∀i ∈ Fin (dim(A)), bi = 0, ei = si.

Definition 3. Given an array A such that

ρann(A) =
〈
sb0,e0
0

, . . . , sbn−1,en−1n−1

〉
and an integer i ∈ Fin n we define the right circular padding operation on axis i as padri such that

padri (A)Ki = cat(AKi , A⟨k0 , ... , ki−1 , bi+si−ei⟩)

for j, kj integers such that 0 ≤ j < i, 0 ≤ kj < sj . Notice that this uses our overloaded definition of

cat, where the second parameter is implicitly reshaped as needed. The shape of the result is given by

ρann(padri (A)) =
〈
sb0,e0
0

, . . . , (si + 1)bi ,ei , . . . , sbn−1,en−1n−1

〉
.

As an example, assume ρann(A) =
〈
2
0,2, 20,2

〉
,

A =

(
1 2

3 4

)
then

padr
0
(A)K0

= padr
0
(A)⟨⟩ = cat(A⟨⟩ , A0+2−2) = ©­«

1 2

3 4

1 2

ª®¬ .
In the same way, we define the left circular padding operation on axis i as padli such that

padli (A)Ki = cat(A⟨k0 , ... , ki−1 , ei−bi−1⟩ , AKi),

whose shape is given by

ρann(padli (A)) =
〈
sb0,e0
0

, . . . , (si + 1)bi+1,ei+1, . . . , sbn−1,en−1n−1

〉
.

Finally, we write padl−1 (respectively padr−1) for the left inverse function of padl (respectively padr).
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Recall our running example

expr = ((1 θ0 Arr) + (−1 θ0 Arr)),

which we reduced to

∀i ∈ Fin 6, j ∈ Fin 4,
(rav Arr) [((i + 1) mod 6) · 4 + j] + (rav Arr) [((i − 1) mod 6) · 4 + j].

using the ψ -correspondence theorem while assuming a single-core processor as the underlying

hardware architecture.

We apply Definition 3 to obtain the following:

expr = padr−1
0
(padl−1

0
(padl

0
(padr

0
(expr))))

= padr−1
0
(padl−1

0
(padl

0
(padr

0
((1 θ0 Arr) + (−1 θ0 Arr))))).

Proposition 4. For any axis i, padli and padri commute, i.e.

padli ◦ padri = padri ◦ padli .

Proposition 4 follows from the associativity of cat.

Proposition 5. Let A be an array without right padding, i.e. an array such that

ρann(A) =
〈
sb0,s0
0

, . . . , sbn−1,sn−1n−1

〉
.

For all i ∈ Fin n and m ∈ Fin (si + 1),

padrmi (A)Ki = cat(AKi ,△(m,▽(bi, AKi))).

In the same way, for A an array without left padding, we have

padlmi (A)Ki = cat(▽(ei − bi −m,△(ei − bi, AKi)), AKi).

Both cases of can be shown by induction on m.

Proposition 6. Let B, C be n-dimensional MoA expressions with ρ(B) = ρ(C) and ⊕ a binary map

operation. Then ∀i ∈ Fin n, padri is distributive over ⊕, i.e.

padri (B) ⊕ padri (C) = padri (B ⊕ C)

holds. Similarly, for padli

padli (B) ⊕ padli (C) = padli (B ⊕ C)

holds. This idea is easily extensible to n-ary map operations.
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Proof. To improve readability, we write

Ti = ⟨k0 , . . . , ki−1 , bi + si − ei⟩ .

In the case of padri, since ⊕ is a binary map operation, we have:

(padri (B) ⊕ padri (C))Ki = cat(BKi
, BTi) ⊕ cat(CKi

, CTi)
⇔ (padri (B) ⊕ padri (C))Ki = cat(BKi

⊕ CKi
, BTi ⊕ CTi)

⇔ (padri (B) ⊕ padri (C))Ki = padri (B ⊕ C)Ki
⇔ padri (B) ⊕ padri (C) = padri (B ⊕ C).

The case for padli can be shown using the same reasoning.

□

By applying Proposition 6 in our example, we get:

expr = padr−1
0
(padl−1

0
(padl

0
(padr

0
(1 θ0 Arr)) + padl

0
(padr

0
(−1 θ0 Arr)))).

Proposition 7. Let B be a n-dimensional unpadded MoA expression, j an axis of B and r an integer.

Then, on any axis i of B, we have that

r θj B = padr−m2

i (padl−m1

i (r θj padlm1

i (padrm2

i (B))))

holds if either one of the following cases holds:

(i) j ≠ i;

(ii) r = 0;

(iii) r < 0 and m2 ≥ |r |;
(iv) r > 0 and m1 ≥ r.

Proof. Cases (i) and (ii) are trivial. In case (i), padding does not affect the rotation. In case (ii),

0 θj B = B holds. We thus want to prove that

i = j, r < 0, m2 ≥ |r |

implies

r θj B = padr−m2

i (padl−m1

i (r θj padlm1

i (padrm2

i (B))))
Using Proposition 5, we can write padlm1

i (padrm2

i (B)) as an array A such that

AKi = cat(p, cat(BKi ,△(m2,▽(bi, BKi))))

where p represents the left-padding of the array. Since B is originally unpadded, we rewrite A as:

AKi = cat(p, cat(BKi ,△(m2,▽(0, BKi)))) = cat(p, cat(BKi ,△(m2, BKi))).

Since r < 0, we have:

(r θi A)Ki = cat(▽(|r |, cat(p, cat(BKi ,△(m2, BKi)))),



3

100 Padding in the Mathematics of Arrays

△(|r |, cat(p, cat(BKi ,△(m2, BKi)))))
= cat(▽(|r |, cat(cat(p, BKi),△(m2, BKi))),

△(|r |, cat(p, cat(BKi ,△(m2, BKi))))).

Using Proposition 4, we get

padr−m2

i (padl−m1

i (r θi A)) = padl−m1

i (padr−m2

i (r θi A)),

and since m2 ≥ |r |, we have

(padr−m2

i (r θi A))Ki =▽(|r |, cat(cat(p, BKi),△(m2 − (m2 − |r |), BKi)))
=▽(|r |, cat(cat(p, BKi),△(|r |, BKi))).

We can thus write:

(padl−m1

i (padr−m2

i (r θi A)))Ki =▽(m1,▽(|r |, cat(cat(p, BKi),△(|r |, BKi))))
=▽(m1 + |r |, cat(cat(p, BKi),△(|r |, BKi))).

Since r is a valid rotation offset in B, we can write

▽(m1 + |r |, cat(cat(p, BKi),△(|r |, BKi))) = cat(▽(m1 + |r |, cat(p, BKi)),△(|r |, BKi))
= cat(▽(|r |, BKi),△(|r |, BKi))
= (r θi B)Ki

and thus

r θj B = padr−m2

i (padl−m1

i (r θj padlm1

i (padrm2

i (B))))

by function extensionality.

The proof for case 4 follows the same pattern as case 3 on the opposite side of the array. □

Proposition 8. Given an array expression A with

ρ(A) = ⟨s0 , . . . , sn−1⟩ ,

some i ∈ Fin n, and two positive integers m1, m2,

padlm1

i (padrm2

i (A))⟨k0 , ... , m1+ki , ... , kn−1⟩ = A⟨k0 , ... , kn−1⟩

with ∀j, kj ∈ Fin sj holds.

Proposition 8 can be proven by definition of padding.

The insight behind Proposition 8 is that the content of A is maintained in the padded expression

B, but that the evaluation of A within B may behave differently due to the shift in indexing and

duplication of data brought by padding.

We call the values m1 and m2 in Proposition 8 consumption speed for a given axis i in the following,

and define a function speedi on expressions such that

speedi (B) = (m1, m2).
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Note that in practice, the choice of m1 and m2 is made by the user of MoA based on their goals.

We apply Proposition 7, and get:

expr = padr−1
0
(padl−1

0
((1 θ0 padl

0
(padr

0
(Arr))) + (−1 θ0 padl

0
(padr

0
(Arr))))).

In order to get rid of the mod operation in the ONF expression we built for expr, we create a new

array Arr′ defined by

Arr′ = padl
0
(padr

0
(Arr))

From Definition 3, we have that

ρann(Arr′) =
〈
8
1,7, 4

〉
and

Arr′ =

©­­­­­­­­­­­«

21 22 23 24

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

1 2 3 4

ª®®®®®®®®®®®¬
.

We rewrite our example with the new definition of Arr′, and get

expr = padr−1
0
(padl−1

0
((1 θ0 Arr′) + (−1 θ0 Arr′))).

We can now transform it to ONF again. The bounds of the relevant indices i and j are given by

Proposition 8. We obtain the following:

∀i ∈ {i ∈ Fin 8 : 1 ≤ i < 7},〈
i, j
〉
ψ ((1 θ0 Arr′) + (−1 θ0 Arr′))

≡ (rav Arr′) [γ(⟨i + 1⟩ ; ⟨8⟩) × 4 + ι4] + (rav Arr′) [γ(⟨i − 1⟩ ; ⟨8⟩) × 4 + ι4].

We then apply γ, rav, and turn ι into a loop to get the following generic program:

∀i ∈ {i ∈ Fin 8 : 1 ≤ i < 7}, j ∈ Fin 4,
(rav Arr′) [(i + 1) × 4 + j] + A′[(i − 1) × 4 + j].

Finally, we apply the composition padr−1
0
◦ padl−1

0
and retrieve the exact same result as we would

have gotten by directly evaluating expr. Notice that thanks to the notion of consumption speed,

we avoided performing the computation on irrelevant indices. In the end, both of the expressions

had 6 loop iterations, but we managed to get rid of the expensive mod operation by adding data

redundancy into Arr.
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3.5.2 Case of Non-Uniform Memory Access

Consider now that expr is embedded within a loop and must be executed several times. Then, in

order to avoid the mod operation at each iteration, the array must be padded at each iteration as well.

Considering hardware and software implementations, it is reasonable to investigate a case in which

the application of a big padding operation p = padlni ◦ padrmi for some natural numbers n,m, i at a

given point in the program is cheaper than applying parts of p in different parts of the program.

For example, if the padding operation depends on inter-process communication, it is usually

significantly cheaper to open one socket and send four elements than to open two sockets each

sending two elements (each opened connection probably also requiring synchronization of some sort,

etc). We however consider unpadding to have negligible cost.

To reduce the number of loci where a padding operation is required and to use the resulting padding

efficiently, we need to define a slightly more complex padding function as well as further notation.

We also need to define the notion of padding exhaustion.

Informally, padding exhaustion corresponds to reaching a state where there is not enough unconsumed

padding left to evaluate the expression and achieve our goals of using padding. Padding exhaustion is

related to consumption speed. In our example, padding is exhausted when both of the equivalent

evaluation strategies stated in Proposition 8 fail to get rid of all mod operations.

Ideally, this state is reached at the end of the computation of all the expressions; if reached in the

middle of execution, the padding must be replenished to proceed.

Definition 9. Let A be an n-dimensional array with shape ⟨s0 , . . . , sn−1⟩. We can specify a 2n-

dimensional reshaping D of A by annotating each component si of its shape with a divisor di such

that si ≡ 0 mod di. We then reshape A into an array D such that

ρ(D) =
〈
d0 , q0 , . . . , dn−1 , qn−1

〉
where qi = si

di . Assume we have

ρann(D) =
〈
d0,d0
0

, qb0,e0
0

, . . . , d0,dn−1n−1 , qbn−1,en−1n−1

〉
.

Then, we can specify an n-dimensional slice B of A such that

ρ(B) = ⟨(e0 − b0) × d0 , . . . , (en−1 − bn−1) × dn−1⟩

and

BKn = D〈
k0

e0−b0 , k0 mod (e0−b0) , ... ,
kn−1

en−1−bn−1 , kn−1 mod (en−1−bn−1)
〉 .

We write

ρann+(A) =
〈
sd0,b0,e0
0

, . . . , sdn−1,bn−1,en−1n−1

〉
the projection function that extracts this "distributed slice annotation" from the array.

In the following definitions, we reuse the present definition of qi.
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Definition 10. Let A be an array such that

ρann+(A) =
〈
sd0,b0,e0
0

, . . . , sdn−1,bn−1,en−1n−1

〉
,

We define the padding-compatible dimension lifting operation on axis i liftpi (A) = B such that B has

n + 1 dimensions,

ρann+(B) =
〈
sd0,b0,e0
0

, . . . , di , q1,bi ,eii , . . . , sdn−1,bn−1,en−1n−1

〉
,

and

BKi = △(qi,▽(ki−1 × qi, AKi−1)).
liftp is a version of lift that extracts its parameters from and modifies the "distributed slice annotation"

of the array.

Definition 11. Consider an array A such that

ρann+(A) =
〈
sd0,b0,e0
0

, . . . , sdn−1,bn−1,en−1n−1

〉
.

In a MoA setting without any notion of padding, any array is implicitly annotated with di = 1,

bi = 0 and ei = si on any given axis i. To properly use liftp as it is defined above, we do the following:

assuming bi = 0 and ei = si for a given axis i of A, we define the prelift operation on that axis for any

d ∈ {d : si ≡ 0 mod d} as prelifti (d, A) = B,

ρann+(B) =
〈
sd0,b0,e0
0

, . . . , s
d,0, sid
i , . . . , sdn−1,bn−1,en−1n−1

〉
and

BKn = AKn .
The precondition on prelifti means that it can only be applied to arrays that are unpadded on axis i.

Recall once again our running example

expr = ((1 θ0 Arr) + (−1 θ0 Arr)),

which we previously reduced to

∀i ∈ Fin 6, j ∈ Fin 4,
(rav Arr) [((i + 1) mod 6) · 4 + j] + (rav Arr) [((i − 1) mod 6) · 4 + j].

using the ψ -correspondence theorem while assuming a single-core processor as the underlying

hardware architecture.

We wish to distribute the computation over two machines. We will achieve this through a combination

of dimension lifting and padding. To distribute the computation over two machines, it is natural to

perform dimension lifting along the 0
th

axis of Arr, taking d0 = 2. We thus start out by creating a

new array Arr′ such that

Arr′ = prelift
0
(2,Arr).

From Definition 11, we have that

ρann+(Arr′) =
〈
6
2,0,3, 4

〉
.

Since prelift
0

does not modify the layout of the array it operates on in any way, we have

expr = (1 θ0 Arr′) + (−1 θ0 Arr′).
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Definition 12. Given an array A with shape〈
sd0,b0,e0
0

, . . . , sdn−1,bn−1,en−1n−1

〉
and an integer i ∈ Fin n we define the right pre-dimension lifting padding operation on axis i as

dpadri (A) = R such that

liftpi (R)Ki = cat(△(qi,▽(ki−1 × qi, AKi−1)), A⟨k0 , ... , ((ki−1+2)×qi+bi−ei) mod si⟩)

for j ∈ Fin i and kj ∈ Fin sj .

Note that we consider operations on the axis i to be done in Fin n, e.g. for i = 0, we have ki−1 = kn−1.

The shape ρann+(R) is as in:〈
sd0,b0,e0
0

, . . . , (si + di)di ,bi ,ei , . . . , sdn−1,bn−1,en−1n−1

〉
.

In the same way, we define the left pre-dimension lifting padding operation on axis i as dpadli (A) = L
such that

liftpi (L)Ki = cat(A⟨k0 , ... , ((ki−1−1)×qi+ei−bi−1) mod si⟩ ,△(qi,▽(ki−1 × qi, AKi−1)))

The shape of L is as in: 〈
sd0,b0,e0
0

, . . . , (si + di)di ,bi+1,ei+1, . . . , sdn−1,bn−1,en−1n−1

〉
.

Finally, we call dpadl−1 (respectively dpadr−1) the left inverse function of dpadl (respectively dpadr).

We are now ready to start padding Arr′. In this case, we would like the two workers to only

communicate at the start and at the end of the computation. To do that, we need to provide each

machine with enough padding to do all of the required computations in one go.

Similarly to the approach we took in the previous section, we create a new array Arr′′ such that

Arr′′ = dpadl
0
(dpadr

0
(Arr′)).

From Definition 12, we have that

ρann+(Arr′′) =
〈
10

2,1,4, 4
〉

and

Arr′′ =

©­­­­­­­­­­­­­­­«

21 22 23 24

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

1 2 3 4

ª®®®®®®®®®®®®®®®¬

.
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Finally, we create an array Arr+ = liftp
0
(Arr′′). From Definition 10, we have:

ρann+(Arr+) =
〈
2, 51,4, 4

〉
and

Arr+

⟨0⟩ =

©­­­­­«
21 22 23 24

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

ª®®®®®¬
,

Arr+

⟨1⟩ =

©­­­­­«
9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

1 2 3 4

ª®®®®®¬
.

By definition of dpadr and dpadl, we have the following:

expr = dpadr−1
0
(dpadl−1

0
(dpadl

0
(dpadr

0
(expr))))

= dpadr−1
0
(dpadl−1

0
(liftp−1

0
(liftp

0
(dpadl

0
(dpadr

0
(expr)))))).

Proposition 13. For a given axis i, the functions dpadli and dpadri commute, i.e.

dpadli ◦ dpadri = dpadri ◦ dpadli .

Proposition 13 can be proven using the associativity of cat.

Proposition 14. Let A be an array and i ∈ Fin (dim(A)). Let

R = dpadri (A)
L = dpadli (A)

then

padr−1i (liftpi (R)Ki) = △(qi,▽(ki−1 × qi, AKi−1)) (3.1)

padl−1i (liftpi (L)Ki) = △(qi,▽(ki−1 × qi, AKi−1)) (3.2)

hold.

Proof. We give a proof for Equation 3.1:

padr−1i (liftpi (R)Ki) = padr−1i (cat(△(qi,▽(ki−1 × qi, AKi−1)), A⟨k0 , ... , ((ki−1+2)×qi+bi−ei) mod si⟩))
=△(qi,▽(ki−1 × qi, AKi−1)).

The proof for Equation 3.2 follows the same pattern as the above. □

Informally, Proposition 14 tells us that for a given array A′
resulting from padding and dimension

lifting an array A on an axis i, unpadding and concatenating all the subarrays resulting from the

dimension lifting operation is the same as concatenating them and unpadding the result.
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Proposition 15. Let A be an array without right padding on its ith
axis, i.e. an array such that

ρann+(A) =
〈
sd0,b0,e0
0

, . . . , sdn−1,bn−1,en−1n−1

〉
with ei = si, i ∈ Fin n. Given an integer m ∈ Fin (si + 1), let A′ = dpadrmi (A). Then, the following

holds:

liftpi (A′)Ki = cat(△(qi,▽(ki−1 × qi, AKi−1)),
△(m,▽(((ki−1 + 1) × qi + bi) mod si, AKi−1)))

In the same way, for A an array without left padding and A′′ = dpadlmi (A), then

liftpi (A′′)Ki = cat(▽(ei − bi −m,△(ei − bi,▽((ki−1 − 1) × qi mod si, AKi−1))),
△(qi,▽(ki−1 × qi, AKi−1)))

holds.

A proof for Proposition 15 may be written using induction on m, like the proof for Proposition 5.

Proposition 16. Let B, C be n-dimensional MoA expressions with identical shapes and ⊕ a binary

map operation. Then, liftpi distributes over ⊕, i.e.

liftpi (B ⊕ C) = liftpi (B) ⊕ liftp(C) (3.3)

for any axis i of B and C . This idea is trivially extensible to n-ary map operations.

Proposition 16 can be proven using the definition of liftp, and the shape-conserving property of n-ary

map operations.

Proposition 17. Let B, C be n-dimensional MoA expressions with identical shapes and ⊕ a binary

map operation. Then, dpadri distributes over ⊕, i.e.

dpadri (B ⊕ C) = dpadri (B) ⊕ dpadri (C). (3.4)

Similarly, we have that

dpadli (B ⊕ C) = dpadli (B) ⊕ dpadli (C). (3.5)

This idea is trivially extensible to n-ary map operations.

Proof. To improve readability, we write

Ti =
〈
k0 , . . . , ((ki−1 + 2) × qi + bi − ei) mod si

〉
.

Since ⊕ is a binary map operation, we have:

(liftpi (dpadri (B)) ⊕ liftpi (dpadri (C)))Ki =

cat(△(qi,▽(ki−1 × qi, BKi−1
)), BTi) ⊕ cat(△(qi,▽(ki−1 × qi, CKi−1

)), CTi)
⇔ (liftpi (dpadri (B)) ⊕ liftpi (dpadri (C)))Ki =

cat(△(qi,▽(ki−1 × qi, BKi−1
)) ⊕ △(qi,▽(ki−1 × qi, CKi−1

)), BTi ⊕ CTi)
⇔ (liftpi (dpadri (B)) ⊕ liftpi (dpadri (C)))Ki = (liftpi (dpadri (B ⊕ C)))Ki

⇔ liftpi (dpadri (B)) ⊕ liftpi (dpadri (C)) = liftpi (dpadri (B ⊕ C))
⇔ dpadri (B) ⊕ dpadri (C) = dpadri (B ⊕ C).
The proof for Equation 3.5 follows the same pattern as above. Since it does not provide any additional

insight, we do not develop it here. □
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By applying Propositions 16 and 17 in our example, we get:

expr = dpadr−1
0
(dpadl−1

0
(liftp−1

0
(liftp

0
(dpadl

0
(dpadr

0
(1 θ0 Arr))) +

liftp
0
(dpadl

0
(dpadr

0
(−1 θ0 Arr)))))).

Proposition 18. LetA be a n-dimensional unpadded MoA expression, j an axis ofA and r an integer.

Then, on any axis i of A, we have that

r θj A = dpadr−m2

i (dpadl−m1

i (liftp−1i (liftpi (dpadlm1

i (dpadrm2

i (r θj A))))))
= dpadr−m2

i (dpadl−m1

i (liftp−1i (r θj liftpi (dpadlm1

i (dpadrm2

i (A))))))

holds if either one of the following cases holds:

(i) j ≠ i;

(ii) r = 0;

(iii) r < 0 and m2 ≥ |r |;
(iv) r > 0 and m1 ≥ r.

The proof for Proposition 18 follows the same pattern as the proof for Proposition 7.

We can now apply Proposition 18 in our example, and get:

expr = dpadr−1
0
(dpadl−1

0
(liftp−1

0
((1 θ0 liftp

0
(dpadl

0
(dpadr

0
(Arr)))) +

(−1 θ0 liftp
0
(dpadl

0
(dpadr

0
(Arr)))))))

= dpadr−1
0
(dpadl−1

0
(liftp−1

0
((1 θ0 Arr+) + (−1 θ0 Arr+)))).

We can now transform the resulting expression expr to ONF for each machine. The bounds of i and

j are once again given by Proposition 8. Thus, for c ∈ {0, 1}, we have the following:

∀i ∈ {i ∈ Fin 5 : 1 ≤ i < 4},
⟨i⟩ ψ ((1 θ0 Arr+

⟨c⟩) + (−1 θ0 Arr+

⟨c⟩))
≡ (rav Arr+

⟨c⟩) [γ(⟨i + 1⟩ ; ⟨5⟩) × 4 + ι4] + (rav Arr+

⟨c⟩) [γ(⟨i − 1⟩ ; ⟨5⟩) × 4 + ι4].

We then apply γ, rav and turn ι into a loop, and we get the following generic program:

∀i ∈ {i ∈ Fin 5 : 1 ≤ i < 4}, j ∈ Fin 4,
(rav Arr+

⟨c⟩) [(i + 1) × 4 + j] + (rav Arr+

⟨c⟩) [(i − 1) × 4 + j].

Finally, we join the results using liftp−1
0

and apply dpadl−1
0

and dpadr−1
0

to obtain the same result as

we would have gotten evaluating expr directly. Moreover, in this case, both expressions had the same

number of loop iterations, and exactly all the padding was consumed in the computation.

In practice however, what we studied above corresponds to a single step of the PDE solver. Assume

the same scenario as above, except that the solver actually runs this step two times. For simplicity,

we generalize expr to a function step such that, for any array A, step(A) = expr[Arr := A]. Two

sequential executions of step would then be written as step2(A).
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According to Proposition 8, we have speed
0
(expr) = (1, 1). Thus, for the padding to last two steps

and thus avoid padding exhaustion before the end of the full computation, we need to pad the 0
th

axis of Aml times on the left and mr times on the right, where ml and mr are given by:

(ml, mr) = 2 × speed
0
(expr) = 2 × (1, 1) = (2, 2).

We start again by creating an array Arr′′ such that

Arr′′ = dpadl2
0
(dpadr2

0
(Arr′)).

From Definition 12, we have that

ρann+(Arr′′) =
〈
14

2,2,5
4

〉
and

Arr′′ =

©­­­­­­­­­­­­­­­­­­­­­­­«

17 18 19 20

21 22 23 24

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

1 2 3 4

5 6 7 8

ª®®®®®®®®®®®®®®®®®®®®®®®¬

.

We create an array Arr++ = liftp(Arr′′). From Definition 10:

ρann+(Arr++) =
〈
2, 72,5, 4

〉
and

Arr++

⟨0⟩ =

©­­­­­­­­­«

17 18 19 20

21 22 23 24

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

ª®®®®®®®®®¬
,

Arr++

⟨1⟩ =

©­­­­­­­­­«

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

1 2 3 4

5 6 7 8

ª®®®®®®®®®¬
.
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Once again, using Proposition 17 and Proposition 18, we get

step2(Arr) = dpadr−2
0
(dpadl−2

0
(liftp−1

0
(step2(Arr++)))).

We can now transform the resulting expression expr to ONF for each machine. The bounds of i and

j are once again given by Proposition 8. Thus, for c ∈ {0, 1}, we have the following:

∀i ∈ {i ∈ Fin 7 : 1 ≤ i < 6},
⟨i⟩ ψ ((1 θ0 Arr++

⟨c⟩ ) + (−1 θ0 Arr++

⟨c⟩ ))
≡ (rav Arr++

⟨c⟩ ) [γ(⟨i + 1⟩ ; ⟨7⟩) × 4 + ι4] + (rav Arr++

⟨c⟩ ) [γ(⟨i − 1⟩ ; ⟨7⟩) × 4 + ι4].

We once again apply γ, rav and turn ι into a loop, and we get the following generic program:

∀i ∈ {i ∈ Fin 7 : 1 ≤ i < 6}, j ∈ Fin 4,
(rav Arr++

⟨c⟩ ) [(i + 1) × 4 + j] + (rav Arr++

⟨c⟩ ) [(i − 1) × 4 + j].

At that point, we can rewrite our expression as such:

step2(Arr) = dpadr−2
0
(dpadl−2

0
(liftp−1

0
(step2(Arr++))))

= dpadr−1
0
(dpadl−1

0
(liftp−1

0
(step(liftp

0
(dpadr−1

0
(dpadl−1

0
(liftp−1

0
(step(Arr++))))))))).

But here, as given by Proposition 14, applying

liftp
0
◦ dpadr−1

0
◦ dpadl−1

0
◦ liftp−1

0

to step(Arr++) is equivalent to applying padr−1
0

and padl−1
0

once to bothArr++

⟨0⟩ andArr++

⟨1⟩ . As a result,

for c ∈ {0, 1},

ρann+(padr−10 (padl−1
0
(Arr++

⟨c⟩ ))) =
〈
5
1,4, 4

〉
.

The rest of the computation follows the single step distributed case presented above. Note that in this

case four intermediate rows of the result were computed twice (once on each machine), resulting in

four additional outer loop iterations compared to the equivalent single machine unpadded two-step

case. Thus, getting rid of inter-process communication involved both data redundancy and duplicated

calculations. Whether performing calculations several times instead of exchanging states between

different computation loci is beneficial, must be determined based on hardware-dependent cost

functions.

3.6 Experiments

We extended the scenario depicted in Section 3.5.1 to our implementation of a PDE solver using a

(−1, 0, 1) stencil along every axis; that is, at every derivation step the left and right padding operation

are applied once along the specified axis. The memory overhead of such padding is roughly 0.4%

in our example. The execution times of 50 derivation steps given different padding parameters are

gathered in Table 3.2.

We see a performance improvement on CPU 1, 2, and 4 between the original code in which no padding

was applied and the cases with padding on either axis. The difference is particularly striking on CPU 2

and 4, where the program runs roughly twice as fast when padding is applied.
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Table 3.2: Execution time (in seconds) of a 3-dimensional PDE solver C implementation compiled

with GCC 8.2.0 with different padding parameters on a single core. CPU 1: Intel(R) Xeon(R) Gold

6130 CPU @ 2.10GHz; CPU 2: AMD EPYC 7601 32-Core; CPU 3: Intel(R) Xeon(R) Silver 4112

CPU @ 2.60GHz; and CPU 4: ThunderX2 CN9980. The code of the experiments is at https:
//github.com/mathematics-of-arrays/padding-in-the-mathematics-of-arrays.

No padding Padding axis 2 Padding axis 3

CPU 1 225.74 168.59 167.84

CPU 2 299.42 119.61 120.12

CPU 3 172.71 160.51 192.70

CPU 4 660.53 347.47 357.32

This large difference seems to indicate that padding allows the compiler to perform better

optimizations on these architectures. This analysis is corroborated by the output of perf stat: on

CPU 2 and 4, the runs without padding execute 2 to 2.5 times as many instructions as their padded

counterparts.

On CPU 3, padding the last axis makes execution slower. Looking at the output of perf stat tells us

that both padded programs execute roughly 87% as many instructions as the unpadded one. When the

last axis is padded, the number of executed instructions per cycle (IPC) drops to 81%. That run should

last roughly
87

81
= 1.07 times as long as the unpadded one. This is in line with our measurements. One

possible explanation is that GCC does not properly take into account the costs of the instructions

involved in the computation.

The number of instructions run on CPU 1 and CPU 3 are close. However, the drop in IPC is much

smaller on CPU 1, resulting in a slight performance improvement.

It is hard to quantify the impact of the padding on data locality and cache line usage. The percentage of

measured cache misses in all the programs is roughly the same for all three runs for a given architecture.

These experiments further confirm the need for a vehicle for easy exploration of codes that implement

different memory layouts.

Further work is needed to explore tiling in this setting. This is because tiling requires reorganizing

data within arrays using transpose, which we did not study here.

3.7 Conclusion

We showed that MoA provides the required building blocks to discuss padding as well as data

distribution given an arbitrary architecture. It is thus well-suited to explore the space of optimal

computations for array expressions at a high level of abstraction. Along the way, we built two

examples demonstrating exactly how to use these notions to optimize stencil computations. Our

approach could be implemented as a compiler optimization to automatically rewrite array expressions

based on hardware and known operational costs. We expect future work to focus both on better

quantifying the benefit of using this approach instead of existing solutions and on implementing

https://github.com/mathematics-of-arrays/padding-in-the-mathematics-of-arrays
https://github.com/mathematics-of-arrays/padding-in-the-mathematics-of-arrays
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MoA and its properties using proof assistants. For the latter, effort is already underway at https:
//github.com/mathematics-of-arrays/moa-formalization.
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Abstract

The problem of producing portable high-performance computing (HPC) software that

is cheap to develop and maintain is called the P
3

(performance, portability, productivity)

problem. Good solutions to the P
3

problem have been achieved when the performance

profiles of the target machines have been similar. The variety of HPC architectures is,

however, large and can be expected to grow larger. Software for HPC therefore needs

to be highly adaptable, and there is a pressing need to provide developers with tools to

produce software that can target machines with vastly different profiles.

Multi-dimensional array manipulation constitutes a core component of numerous

numerical methods, such as finite difference solvers of Partial Differential Equations

(PDEs). The efficiency of these computations is tightly connected to traversing

and distributing array data in a hardware-friendly way. The Mathematics of Arrays

(MoA) allows for formally reasoning about array computations and enables systematic

transformations of array-based programs, e.g. to use data layouts that fit to a specific

architecture.

This paper shows a general methodology for solving the P
3

problem in domains that are

well-explored using Magnolia, a language designed to embody generic programming.

1
Benjamin Chetioui, Marius Larnøy, Jaakko Järvi, Magne Haveraaen, and Lenore Mullin. P

3
problem and

Magnolia language: Specializing array computations for emerging architectures. Frontiers in Computer Science, 4, 2022.

doi:10.3389/fcomp.2022.931312

https://doi.org/10.3389/fcomp.2022.931312


4

114 P3 Problem and Magnolia Language

The Magnolia programmer can restrict the semantic properties of abstract generic types

and operations by defining so-called axioms. Axioms can be used to produce tests

for concrete implementations of specifications, for formal verification, or to perform

semantics-preserving program transformations.

We leverage Magnolia’s semantic specification facilities to extend the Magnolia compiler

with a term rewriting system. We implement MoA’s transformation rules in Magnolia,

and demonstrate through a case study on a finite difference solver of PDEs how our

rewriting system allows exploring the space of possible optimizations.

4.1 Introduction

The quest for higher performance fuels innovation on hardware architectures; we have seen a wide

variety of high-performance computing (HPC) architectures in the past and can expect new ones to

keep appearing. Long-lived and successful HPC software must thus be highly adaptable, adjustable

to different memory hierarchies and changing intra- and interprocess communication hardware.

The problem of producing portable HPC software that is easy, or at least not unreasonably difficult,

to develop and maintain is called the P
3

(performance, portability, productivity) problem. Good

solutions to the P
3

problem have been achieved when the performance profiles of the target machines

have been similar [177]. As more new hardware architectures emerge, there is a pressing need to provide

developers with tools to produce such software for targets with vastly different profiles. This includes

architectures within Wolfe’s P
3

machine performance model (CPUs, GPUs, or other accelerators,

possibly distributed) [177] but also those that do not (e.g., Groq’s Tensor Streaming Processor [5]).

Multidimensional array manipulation is at the core of numerous numerical methods. The topic of

optimizing the performance of array computations is therefore extremely relevant to the P
3

problem.

We have previously explored the Mathematics of Arrays (MoA) formalism [127] as a tool to optimize

array computations for different hardware architectures, first through their Denotational Normal
Form (DNF) [36] and then through their Operational Forms (OFs) [37]. A thorough mathematical

understanding of a given domain is key to enabling domain-specific semantic-preserving rewrites—

and therefore optimizations.

The portability and productivity pillars of P
3

are both strongly related to the notion of code reuse.

Portability as meant here is the ability to run the same code with high performance on different

machines. Productivity means that applications can be developed and maintained with a reasonable

and predicable effort. Research unequivocally shows that productivity increases through reuse [23; 56;

138]. Generic programming has proven to be an effective method of constructing libraries of reusable

software components. The Magnolia programming language [14] is designed as an embodiment of

generic programming [38]. It allows the flexible intermixing of specifications and implementations.

Specifications can additionally be restricted by semantic requirements (called axioms) in the form of

assertions. These axioms can be used for testing [20], but also for optimization when used as directed

rewrite rules, in the case of equational or conditional equational axioms [17].
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4.1.1 Schedules as Hardware Abstractions

In their 2012 paper on Halide, Ragan-Kelley et al. introduce the term schedule to refer to decisions

about storage and about the order of computations in a program [149]. The insight is that the essence

of an algorithm is distinct from its schedule—allowing the advent of a programming model where

both kinds of computations are not anymore intertwined but instead expressed independently from

each other.

Stepanov-style generic programming abstracts algorithms and data structures by specifying minimum

syntactic and semantic requirements on instantiations. Said differently, the types and operations

underlying a generic implementation are only characterized by the part of their observable behavior

that is relevant to the generic algorithm.

When observed through the lens of generic programming, a schedule is an abstraction for the kind

of hardware architecture underlying the computations. We consider only the information about

the hardware that is relevant for executing our algorithm efficiently: how computations should be

ordered, and how data should be stored. Similar hardware architectures are then valid instantiations

for the same schedule.

Scheduling, in the case of array computations, relates particularly to the access patterns of the arrays.

As a motivating example, consider an array program running on a single CPU with memory, the

classical model of a computer. We may have three standard traversal patterns for computations over

our arrays:

1. a row-major traversal;

2. a column-major traversal;

3. a tiled traversal.

While the original algorithm can be expressed without making any assumption about the underlying

hardware, the choice of a particular hardware will dictate which traversal pattern is most efficient.

In other cases, the choice of a particular schedule may be desirable. E.g., on hardware consisting

of several distributed CPUs connected through some communication network, we may want the

schedule to handle inter-CPU communication using MPI. If each one of these CPUs is connected

to several GPUs, we may also want the schedule to load data on and off the GPUs as needed. Such

choices will affect the desired data layout, and consequently the data access patterns so as to match the

distribution of the data. These changes will have to be reflected in the presentation of the algorithm.

The execution time for an algorithm adapted to its schedule may be dramatically shorter than for

an algorithm exhibiting inadapted data access patterns. While an algorithm and its schedule can be

expressed independently, choices in the latter may affect what is an appropriate expression of the

former, and vice versa. Our approach uses rewriting technology to adapt a unique algorithm to

adequately exploit the data traversal pattern of a schedule, and underlying hardware characteristics.

Throughout the rest of the paper, we view schedules as hardware abstractions. This view is fully

compatible with Ragan-Kelley et al.’s definition of schedules, but conveys our intent more accurately.
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4.1.2 Contribution and Structure of the Paper

The contribution of this paper is a general methodology for solving the P
3

problem in well-explored

domains that keeps the essence of the algorithm separate from its schedule. We define well-

explored domains as those for which significant domain-specific knowledge and a mathematical

formalization exist. We perform a case study on a Partial Differential Equation (PDE) solver based

on Finite Difference Methods (FDM). We extend the Magnolia compiler with code generation and

term rewriting facilities based on axioms. We implement our solver in Magnolia, using MoA as

an underlying basis for the code, giving us both generic and hardware-specific formally verified

optimization rules—also directly implemented in Magnolia.

The paper is structured as follows. Section 4.2 provides necessary background on Magnolia. Section 4.3

describes our methodology in detail, and illustrates it with a PDE solver based on FDM. Section 4.4

reflects on our work and ties it together with relevant related work. All the code is available as an

example in the repository for magnoliac [35] (see the examples/pde folder at https://github.com
/magnolia-lang/magnolia-lang/tree/base-program).

4.2 Background

4.2.1 Magnolia

The phrase generic programming has over decades of programming language development come to

have a variety of intepretations, depending on the main type of genericity considered. Gibbons gives

a taxonomy of interpretations [62]. Stepanov-style generic programming [49] corresponds to what

Gibbons calls genericity by property, where one describes data structures and algorithms in terms of

syntactic and semantic requirements. This is the essence of Stepanov’s and Musser’s concepts [137].

They are the direct inspiration behind C++0x concepts [76]; the C++20 concepts are a scaled back

realization of those that only allow syntactic requirements on instantiations. (In this latter case, we

talk of genericity by structure.)

Magnolia is a programming language designed as an embodiment of Stepanov-style generic

programming [14]. Magnolia code is structured into modules that mix abstract specifications of

operations and their concrete implementations flexibly, following the work of Goguen and Burstall on

the theory of institutions [68]. The language does not offer any primitive types aside from predicates:

every data structure is implemented in a configurable host programming language. As of today,

Magnolia can target C++ and Python [35]. Our prior work coins the term genericity by host language to

refer to this axis of parameterization, in the style of Gibbons’ taxonomy [38]. Composite operations

can be implemented in Magnolia, while the base types and operations, including loop structures, are

implemented in the host language. The programmer can freely decide where to set the boundary

between the operations implemented in Magnolia, and those implemented in the base library written

in the host language—depending on what is more convenient. An appropriate choice of underlying

data structures results in code that is as performant as if implemented directly in the host language [38].

Because the axiom formalism is semantically compatible with the program code, Magnolia avoids the

semantic gap common in approaches to formal software verification [153].

A Magnolia signature declares types and operations. A signature can be augmented with axioms

https://github.com/magnolia-lang/magnolia-lang/tree/base-program
https://github.com/magnolia-lang/magnolia-lang/tree/base-program
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that restrict the properties of its types and operations: the resulting module is a concept. An

implementation allows the same declarations as a signature , but also (generic) implementations

for the declared operations. The last kind of module in Magnolia is a program, a specific kind of

implementation in which all the specified operations and types are matched with implementations.

Crucially, types and operations in a program are no longer generic but instead fully concrete. An

implementation can be a model of a concept; a concept can also be a model of another concept.

Such modeling relations can be specified directly in Magnolia using the satisfaction language

construct.

Magnolia operations can be functions, procedures, and predicate s. The arguments to functions

and predicates are immutable, while arguments to procedures are given explicit modes: obs (read-

only), upd (read/write), and out (write-only, and the procedure promises to initialize the argument).

Procedures do not return a value. Calls to procedures are prefixed with the call keyword.

Listing 4.1 gives a general overview of the different kinds of Magnolia modules. We first specify the

signature of a magma (a set T with a closed binary operation bop). By asserting the associativity

property on a magma, we get a semigroup. The ConcretePartialSemigroup implementation

describes an external C++ API providing a guarded multiplication operator over integer matrices,

where the guard is intended to ensure the argument matrices have compatible dimensions.

ExampleProgram builds multiplyThreeMatrices off of the primitive building blocks provided

by ConcretePartialSemigroup. The ExampleProgramHasMulPartialSemigroup
satisfaction relation indicates that ExampleProgram satisfies the semigroup axioms, with the set

of integer matrices and guarded multiplication on it. The guard provided on the multiplication

operation in the left-hand side of the satisfaction is propagated to the right-hand side. The resulting

satisfaction relation thus asserts that the ExampleProgram has a partial semigroup structure. A

block of renamings ([ T => IntMatrix, bop => _*_ ]) is applied to Semigroup. Magnolia’s

renamings allow changing the names of types and operations in places where a module is “opened”.

This is a powerful feature which allows normalizing the names exposed by modules when we open

them in a given scope, independently of how their types and operations were initially named.

Listing 4.1: Multiplying three matrices in Magnolia.

s i g n a t u r e Magma = {
type T;
f u n c t i o n bop(a: T, b: T): T;

}

c o n c e p t Semigroup = {
use Magma;
axiom associativity(a: T, b: T, c: T) {

a s s e r t bop(bop(a, b), c) == bop(a, bop(b, c));
}

}

implementat ion ConcretePartialSemigroup =
e x t e r n a l C++ lib.int_matrices {

type Nat;
type IntMatrix;

p r e d i c a t e lhsNrowsIsRhsNcols(
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m1: IntMatrix , m2: IntMatrix );

f u n c t i o n _*_(m1: IntMatrix , m2: IntMatrix ): IntMatrix
guard lhsNrowsIsRhsNcols(m1, m2);

}

program ExampleProgram = {
use ConcretePartialSemigroup;

f u n c t i o n multiplyThreeMatrices(
A: IntMatrix , B: IntMatrix , C: IntMatrix ): IntMatrix =

A * B * C;
}

// The guard on _*_ in ExampleProgram is lifted to the
// specification on Semigroup in the left -hand side ---this
// satisfaction relation thus states that ExampleProgram has
// a partial semigroup structure.
s a t i s f a c t i o n ExampleProgramHasMulPartialSemigroup =

ExampleProgram models
Semigroup[ T => IntMatrix , bop => _*_ ];

4.2.1.1 Exploiting Magnolia axioms

Concept axioms have previously found use as test oracles [20] and as generic optimization rules [17; 171].

We implement two module transformations called rewrite and implement in magnoliac, the Magnolia

compiler under active development [35].

The rewrite transformation extracts all assertions of equations from a given concept, and uses them

as directed rewrite rules within a target module expression. The maximum allowed number of

applications of these directed rewrite rules is provided as an argument to the transformation. The

rewrite rules can only be applied from left to right in the current implementation, and there is thus

no need to specify how to orient them.

The implement transformation highlights a third possible use case for Magnolia axioms, i.e. code

generation. The transformation extracts all the assertions of equations from a given concept where the

left-hand side is a call to a declared function (or predicate) with pairwise distinct universally quantified

arguments, and generates an implementation for the function where the body is the right-hand side

of the assertion. Intuitively, an assertion with the properties we outlined describes the behavior of the

function on the left-hand side at every point. Therefore, such assertions are not only a way to specify

the intended behavior of a function, but also a way to derive an actual implementation for it in case

one was not already provided.

The intuition behind implement is that it transforms a specification into an implementation. The

implement transformation produces changes visible at the module level, while rewrite replaces

expressions within already implemented operations. Figure 4.1 describes the grammar for the rewrite
and implement transformations.
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Figure 4.1: The grammar for the rewrite and implement module transformations in Magnolia.

transformation ::= rewrite module-expr with module-expr int
| implement module-expr in module-expr

Consider the multiplyThreeMatrices function in Listing 4.1. The function is intended

to multiply three matrices together—and its body A * B * C desugars to the expression

_*_(_*_(A, B), C). Due to the associativity property, the order in which the multiplications are

executed does not matter when it comes to the correctness of the result. However, it matters a lot

when it comes to performance: suppose A is of dimensions 100 × 2, B of dimensions 2 × 20, and C of

dimensions 20 × 90. Executing A * B requires 100 × 2 × 20 scalar multiplications, and executing

(A * B) * C thus requires 100 × 2 × 20 + 100 × 20 × 90 = 184000 scalar multiplications. On the

other side, executing B * C requires 2× 20× 90 scalar multiplications, and executing A * (B * C)
requires executing 2× 20× 90 + 100× 2× 90 = 21600 scalar multiplications, nearly ten times fewer.

Suppose that a developer wants to use the multiplyThreeMatrices function in their program.

They care about efficiency, and know that the input matrices A, B, and C have the same dimensions as

specified above. They can use the assertion provided in the associativity property of the Semigroup
concept defined in Listing 4.1 as a rewrite rule in multiplyThreeMatrices to optimize the

expression from (A * B) * C to A * (B * C). Listing 4.2 shows how.

Listing 4.2: Demonstration of the Magnolia rewrite transformation.

program DevProgram = rewrite ExampleProgram
with Semigroup[ bop => _*_, T => IntMatrix ] 1;

The Magnolia rewrite module transformation takes three arguments: the module on which to perform

the rewrite (ExampleProgram in the example), the module from which to extract rewriting rules

(Semigroup with some renamings applied in the example), and a maximum allowed number of rule

applications (1 in the example).

Here, multiplyThreeMatrices is a toy example, and defined directly in the program being

transpiled—it would therefore be very easy to reimplement it manually. However, this is not always

the case: the function one wants to transform could be very complicated, and hidden deep inside

an external dependency. Without the ability to perform rewritings on functions that have been

previously defined, the developer would have to write their own version of this function.

4.3 Methodology and Case Study

We describe here our proposed methodology for writing performant and portable code productively

using the Magnolia programming language. Each step of this methodology is first described from

a high-level perspective, and then concretely demonstrated for our PDE solver example. Figure 4.2

gives a graphical overview of the concrete steps we take to optimize the PDE solver example in the

following.
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High-level

array program

MoA expression

Denotational Normal Form

(DNF)

ψ -reduction

Operational Forms

(OFs)

Optimized

Operational Form

Hardware specialization

Magnolia

C++

MoA world

Figure 4.2: A graphical overview of the methodology presented in the paper. A high-level array

program is passed as input, and translated to a corresponding MoA expression. This MoA expression

is then normalized using a process known as ψ -reduction to produce the DNF. ψ -reduction gives

hardware-independent rewriting rules on MoA expressions. By adding in knowledge about the

specific hardware architecture underlying the computation, the DNF can be transformed into one of

its OFs. This enables also hardware-specific optimization rules, which we can apply to the OF so as to

produce an optimized OF. The program is initially written in Magnolia, and all the manipulation

steps in the MoA world are done in Magnolia. The hardware specialization is implemented in the host

language underlying the implementation (here C++), and the code contributing to the production of

an optimized OF is thereby split between Magnolia and C++.
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4.3.1 Identifying and Formalizing the Domain

The first step of our methodology is to build a thorough understanding of the targeted problem. We

do that by identifying and formalizing the domain underlying the problem. Formalizing the domain

gives us a mathematical understanding of the properties expected of the types and operations involved

in the problem. These in turn allow specifying semantics-preserving optimization rules on them,

whose correctness can be proven.

PDE solvers using FDM are based on multi-dimensional array computations. In 2018, Burrows et al.

identified an array API for FDM solvers. In 2019, Chetioui et al. followed up with a formalization

of the identified array API using MoA. We will first give an overview of PDE solvers as described

by Burrows et al., and an introduction to the corresponding MoA theory. With this background in

place, we will reimplement the PDE solver based on FDM from the work of Chetioui et al. [36], and

implement hardware-agnostic and hardware-dependent rewriting rules. We show how they can be

applied to our Magnolia program, and measure the resulting performance improvements.

4.3.1.1 PDEs

PDE solvers have many application areas. One example is numerical simulations of wind flow—e.g.

for optimizing windmill positioning in large-scale wind farms.

Computing solutions to PDEs numerically requires discretizing continuous equations to a discrete

domain. This approach to PDE solvers is often illustrated in the literature with Burgers’ equation [27].

Equation 4.1 presents the equation in its coordinate-free form.

𝜕u⃗
𝜕t

+ u⃗ · ∇⃗u = ν∇2u⃗, (4.1)

where u⃗ is velocity, t time, and ν the viscosity coefficient.

Assuming a 3D space, we can use a Cartesian coordinate system to rewrite Equation 4.1 as the following

system of equations

𝜕u
𝜕t

+ u𝜕u
𝜕x

+ v𝜕u
𝜕y

+ w𝜕u
𝜕z

= ν
𝜕2u
𝜕x2

+ ν𝜕
2u

𝜕y2
+ ν𝜕

2u
𝜕z2

(4.2)

𝜕v
𝜕t

+ u𝜕v
𝜕x

+ v𝜕v
𝜕y

+ w𝜕v
𝜕z

= ν
𝜕2v
𝜕x2

+ ν𝜕
2v

𝜕y2
+ ν𝜕

2v
𝜕z2

(4.3)

𝜕w
𝜕t

+ u𝜕w
𝜕x

+ v𝜕w
𝜕y

+ w𝜕w
𝜕z

= ν
𝜕2w
𝜕x2

+ ν𝜕
2w
𝜕y2

+ ν𝜕
2w
𝜕z2

, (4.4)

where u⃗ = (u, v, w).

To discretize the domain, we describe aNx×Ny×Nz grid of velocity values bounded byLx (respectively

Ly and Lz) on axis x (respectively y and z) such that the u component of the velocity at index (i, j, k)
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and timestep n is given by

uni,j,k = u(iΔx, jΔy, kΔz, nΔt), (4.5)

with Δx = Lx
Nx

, Δy = Ly
Ny

, and Δz = Lz
Nz

.

Similarly, the partial derivative of u in the x direction at index (i, j, k) and timestep n is

𝜕u
𝜕x

(iΔx, jΔy, kΔz, nΔt). (4.6)

In the FDM, we compute a partial derivative as a weighted sum of neighbouring grid points—where

the weights are given by a list of factors called a stencil. The stencil is chosen by a numerical expert.

This paper, following the work of Burrows et al. uses the numerical stencils (− 1

2
, 0, 1

2
) and (1,−2, 1)

for the first and second order partial derivatives respectively.

Given these stencils, the partial derivative of u in the x direction at index (i, j, k) and timestep n is

approximated by

𝜕u
𝜕x

(iΔx, jΔy, kΔz, nΔt) ≈ 1

2Δx
(uni+1,j,k − uni−1,j,k), (4.7)

which is accurate to O((Δx)2,Δt). Computing the partial derivative along the y (respectively z) axis

follows a similar pattern, where j (respectively k) varies instead of i.

The standard 3D explicit finite difference approximation of Equation 4.2 is then given by

un+1i,j,k = uni,j,k −
Δt
2Δx

uni,j,k(u
n
i+1,j,k − uni−1,j,k) +

νΔt
(Δx)2 (u

n
i+1,j,k + u

n
i−1,j,k − 2uni,j,k)

− Δt
2Δy

vni,j,k(u
n
i,j+1,k − uni,j−1,k) +

νΔt
(Δy)2 (u

n
i,j+1,k + u

n
i,j−1,k − 2uni,j,k)

− Δt
2Δz

wni,j,k(u
n
i,j,k+1 − uni,j,k−1) +

νΔt
(Δz)2 (u

n
i,j,k+1 + u

n
i,j,k−1 − 2uni,j,k).

The discretization of Equations 4.3 and 4.4 follows the same pattern.

The API of Burrows et al. is sufficient to compute numerical solutions to PDEs using FDM. It

consists of elementwise arithmetic operations at the array level (+, -, *), a rotation operation on arrays

(called “shift”), and arithmetic operations at the scalar level—corresponding to the behavior of the

elementwise operations at each index of the array.

4.3.1.2 MoA

MoA [127; 130] is an algebra for describing operations on arrays. MoA distinguishes between two

abstraction levels: the Denotational Normal Form (DNF), which describes an array by its shape

together with a function describing its value at every index, and the Operational Form (OF) which

describes it on the level of the memory layout. Programs written at the DNF level do not presume

knowledge of a hardware architecture. Reasoning at the DNF level is thus completely hardware

agnostic. By repeatedly applying a set of terminating rewrite rules, any MoA expression can be
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reduced to its DNF [36; 132]—where the resulting array is described at each index by indexing into

the input arrays and scalar-level operations.

Given information about the hardware architecture and the memory layout of the arrays, the ψ -

correspondence theorem [130] allows transforming a DNF expression into a corresponding hardware-

dependent OF—in which the access patterns on the array are described in terms of start, stride, and

length.

We give an informal overview of some operations at the DNF and OF levels below. We refer the

interested reader to previous work for formal definitions [37; 127].

DNF Operations The dimension of an array A is denoted dim(A). It corresponds to the number

of axes of the array. For dim(A) = n, the shape of A is an n-element vector ρ(A) = ⟨s0, . . . , sn−1⟩
where si is the length of axis i. The total number of elements (or size) of A is given by the product of

the shape, Πρ(A) = Πn−1
i=0 si.

In the definitions below A stands for an arbitrary array with dimension n and shape as defined above.

Further, we use the following array in examples:

M =
©­«
1 2

3 4

5 6

ª®¬ .
Thus, ρ(M) = ⟨3, 2⟩.

The relevant MoA operations on the DNF level are:

• the indexing function ψ , which takes an index i into an array and returns the subarray at

the indexed position. When i’s length equals the dimension of the array, i is a total index.

Otherwise, it is partial. ⟨⟩ ψ A = A holds. For our example, we have

⟨2⟩ ψ M = ⟨5, 6⟩ ,
ρ(⟨2⟩ ψ M) = ⟨2⟩ .

• the reshape function that takes an array A and a shape s such that Πs = Πρ(A), and creates a

new array with shape s containing the elements of A. Thus, ρ(reshape(s, A)) = s holds. For

example,

reshape(M, ⟨2, 3⟩) =
(
1 2 3

4 5 6

)
.

• a rotation function rotate that takes an array A, an axis j and an offset o, and shift A by o along

its jth
axis. The shape is unchanged, i.e. ρ(rotate(A, j, o)) = ρ(A) holds. We give a few examples

of how rotation behaves on axis 0 and 1 of M:

rotate(M, 0, 1) = ©­«
5 6

1 2

3 4

ª®¬ ,
rotate(M, 0,−1) = ©­«

3 4

5 6

1 2

ª®¬ ,
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rotate(M, 1, 1) = ©­«
2 1

4 3

6 5

ª®¬ .
ψ-Reduction Mullin and Thibault described a rewriting system for MoA expressions at the DNF

level, referred to as ψ -reduction. They conjectured that ψ -reduction is canonical (i.e. it is terminating

and confluent)—and thus takes any MoA expression to its unique DNF. In their work on embedding

Burrows et al.’s array API for FDM solvers in MoA, Chetioui et al. outline a rewriting system sufficient

to transform a program based on this API to its DNF and show that this rewriting system is indeed

canonical [36]. This draws appeal to MoA as a framework for the optimization of PDE solvers based

on FDM. ψ -reduction essentially consists of rules that move indexing operations inwards—until

eventually, the expression does not contain any collective operation, but consists only of indexing

and scalar operations. As a consequence, it is guaranteed that the resulting array expression can be

computed without the need to materialize any intermediate array. Because the rewriting system is

canonical, another consequence is that the form in which we choose to express our computation is

irrelevant: all equivalent expressions in the language of MoA reduce to the same DNF expression.

OF Operations At the OF level, we assume knowledge of the target architecture, and an intended

memory layout of the array. The central MoA operations on the OF level are:

• the family of lifting operations liftj that take two natural numbers d, q such that d · q = sj , and

reshape A into the shape

〈
s0, . . . , sj−1, d, q, sj+1, . . . , sn−1

〉
;

• the flattening function rav that transforms a multidimensional array into its linear

representation in memory. Thus, ρ(rav(A)) =
〈
Πρ(A)

〉
holds;

• the mapping function γ, which takes a shape s with Πs = Πρ(A) and a total index into A and

returns the corresponding index into rav(A). In this paper, we assume a row-major ordering.

The OF operations presented here are crucial to the theory of MoA. We thus include them for the

sake of completion. These operations however do not appear explicitly in the development of our

methodology.

4.3.1.3 Initial Magnolia Implementation

We implemented a PDE solver using the MoA array API. The implementation consists of four

components:

1. a specification of the necessary MoA types and operations, with axioms asserting that they

respect the relevant properties;

2. a foreign API exposing the core types and operations of the MoA specification;

3. an external implementation of the foreign API in a host language (C++);

4. an implementation of the PDE solver built upon the external MoA building blocks.

The ψ -calculus conflates arrays, indices, shapes, and scalars into a single array type. While convenient
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in the formalism, we distinguish these types in our Magnolia implementation for ease of reasoning,

and to leverage the language’s type system to avoid programming errors.

Listing 4.3 shows the API from Burrows et al. in the language of MoA.

Listing 4.3: An array API for FDM solvers in Magnolia.

s i g n a t u r e ArrayAPI = {
type Array;
type E;

type Axis;
type Index;
type Offset;

/* Scalar -Scalar operations */
f u n c t i o n _+_(lhs: E, rhs: E): E;
f u n c t i o n _-_(lhs: E, rhs: E): E;
f u n c t i o n _*_(lhs: E, rhs: E): E;
f u n c t i o n _/_(lhs: E, rhs: E): E;

/* Scalar -Array operations */
f u n c t i o n _+_(lhs: E, rhs: Array): Array;
// ... prototypes as above for _-_, _*_, _/_

/* Array -Array operations */
f u n c t i o n _+_(lhs: Array , rhs: Array): Array;
// ... prototypes as above for _-_, _*_, _/_

/* Rotation */
f u n c t i o n rotate(array: Array , axis: Axis , offset: Offset)

: Array;

/* Indexing */
f u n c t i o n psi(ix: Index , array: Array): E;

}

The declaration of the types and operations form an algebraic signature. We augment that signature

with semantic properties in the form of axioms to obtain a concept. Listing 4.4 relates each array-level

arithmetic operation in the API to its corresponding scalar-level operation [28; 36]. The axioms for

all binary operations follow the same pattern, we hence only show axiom bodies for the + operation

for the sake of brevity.

Listing 4.4: Axioms for the arithmetic operations of our array API.

c o n c e p t ArrayAPI_ArithmeticAxioms = {
r e q u i r e ArrayAPI;

/* Scalar -Array Axioms */
axiom scalarBinaryPlusAxiom(lhs: E, rhs: Array ,

ix: Index) {
a s s e r t psi(ix, lhs + rhs) == lhs + psi(ix, rhs);
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}
// axiom scalarBinarySubAxiom(lhs: E, rhs: Array ,
// ix: Index)
// axiom scalarMulAxiom(lhs: E, rhs: Array , ix: Index)
// axiom scalarDivAxiom(lhs: E, rhs: Array , ix: Index)

/* Array -Array Axioms */
axiom arrayBinaryPlusAxiom(lhs: Array , rhs: Array ,

ix: Index) {
a s s e r t psi(ix, lhs + rhs) ==

psi(ix, lhs) + psi(ix , rhs);
}
// axiom arrayBinarySubAxiom(lhs: Array , rhs: Array ,
// ix: Index)
// axiom arrayMulAxiom(lhs: Array , rhs: Array , ix: Index)
// axiom arrayDivAxiom(lhs: Array , rhs: Array , ix: Index)

}

The specifications in Listing 4.3 are (straightforwardly) implemented as external C++ functions and

types, not shown here. Lastly, Listing 4.5 shows our implementation of one full step of the PDE.

Listing 4.5: Implementation of one full step of the PDE solver in Magnolia.

/* Solver */
procedure step(upd u0: Array , upd u1: Array , upd u2: Array) {

var v0 = u0;
var v1 = u1;
var v2 = u2;

v0 = substep(v0 , u0 , u0 , u1, u2);
v1 = substep(v1 , u1 , u0 , u1, u2);
v2 = substep(v2 , u2 , u0 , u1, u2);
u0 = substep(u0 , v0 , u0 , u1, u2);
u1 = substep(u1 , v1 , u0 , u1, u2);
u2 = substep(u2 , v2 , u0 , u1, u2);

}

f u n c t i o n substep(u: Array , v: Array , u0: Array ,
u1: Array , u2: Array) : Array =

u + dt()/( two(): Float) * (nu() *
((one(): Float)/dx()/dx() *

(rotate(v, zero(), -one(): Offset) +
rotate(v, zero(), one(): Offset) +
rotate(v, one (): Axis , -one (): Offset) +
rotate(v, one (): Axis , one (): Offset) +
rotate(v, two (): Axis , -one (): Offset) +
rotate(v, two (): Axis , one (): Offset )) -

three() * (two(): Float)/dx()/dx() * u0) -
(one(): Float )/(two(): Float)/dx() *

(( rotate(v, zero(), one(): Offset) -
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rotate(v, zero(), -one (): Offset )) * u0 +
(rotate(v, one(): Axis , one(): Offset) -
rotate(v, one (): Axis , -one (): Offset )) * u1 +

(rotate(v, two(): Axis , one(): Offset) -
rotate(v, two (): Axis , -one (): Offset )) * u2));

/* Float ops */
r e q u i r e f u n c t i o n -_(f: Float): Float;
// magnoliac does not offer support for literals as of yet ,
// and we must thus define constant functions in the host
// language for each number of a given type we want to use.
r e q u i r e f u n c t i o n one (): Float;
r e q u i r e f u n c t i o n two (): Float;
r e q u i r e f u n c t i o n three (): Float;

/* Axis utils */
r e q u i r e f u n c t i o n zero (): Axis;
r e q u i r e f u n c t i o n one (): Axis;
r e q u i r e f u n c t i o n two (): Axis;

/* Offset utils */
r e q u i r e f u n c t i o n one (): Offset;
r e q u i r e f u n c t i o n -_(o: Offset ): Offset;

/* Problem -specific parameters */
r e q u i r e f u n c t i o n nu(): Float;
r e q u i r e f u n c t i o n dt(): Float;
r e q u i r e f u n c t i o n dx(): Float;

4.3.2 Deriving Optimization Rules

Armed with a thorough understanding of the problem, we can now derive semantics-preserving

optimization rules—hardware-specific or otherwise.

Before we can apply rewriting rules defined using MoA to our program, we need to change its level

of abstraction, i.e. go from an implementation that describes the resulting array using whole-array

operations to one that describes its value at every index. This transformation corresponds to the step

from the high-level array program to a corresponding MoA expression in Figure 4.2.

We define a Magnolia program called BasePDEProgram that contains the functions in Listing 4.5,

giving a concrete implementation to the basic underlying operations and data structures in a host

language. Listing 4.6 shows how we achieve the transformation from the high-level array program to

a corresponding MoA expression in Magnolia. We break down the components of the listing in the

following.

Listing 4.6: Lowering step from a high-level array program to a MoA expression.

program PDEProgramMoA = {
use (rewrite
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(implement ToIxwiseGenerator in BasePDEProgram)
with ToIxwise 1);

use ExtBasicSchedule;
};

The ToIxwiseGenerator concept is shown in Listing 4.7. The toIxwiseGenerator axiom

consists of a single assertion, which describes the behavior of the substepIx function when all

of its arguments are universally quantified distinct variables. The right-hand side of the equation

is thus a valid implementation for substepIx. Because this function is not implemented in the

original program, we can use the implement transformation with ToIxwiseGenerator to generate

an implementation of substepIx in the implementation given in Listing 4.5. So as to enable further

optimizations, implement unfolds function calls in the right-hand side of the equation. The resulting

index-level code is shown in Listing 10 (in Appendix 3.3).

Listing 4.7: A generator for an index-level implementation of substep.

c o n c e p t ToIxwiseGenerator = {
type Array;
type Float;
type Index;

f u n c t i o n substepIx(u: Array , v: Array , u0: Array ,
u1: Array , u2: Array , ix: Index)

: Float;
f u n c t i o n substep(u: Array , v: Array , u0: Array ,

u1: Array , u2: Array ): Array;

f u n c t i o n psi(ix: Index , array: Array): Float;

axiom toIxwiseGenerator(u: Array , v: Array , u0: Array ,
u1: Array , u2: Array , ix: Index) {

a s s e r t substepIx(u, v, u0, u1, u2, ix) ==
psi(ix, substep(u, v, u0, u1, u2));

}
}

To make use of substepIx within the program, we need to replace calls to substep with calls to a

scheduling function schedule that uses substepIx to describe the value of the result array at every

index. This is achieved through the outermost program transformation in Listing 4.10, that uses the

ToIxwise concept of Listing 4.8. Throughout the rest of the paper, we use the term schedule as in

Halide [149].

Listing 4.8: A concept with a rewrite rule from substep to a new scheduling function.

c o n c e p t ToIxwise = {
type Array;

f u n c t i o n substep(u: Array , v: Array ,
u0: Array , u1: Array , u2: Array): Array;

f u n c t i o n schedule(u: Array , v: Array ,
u0: Array , u1: Array , u2: Array): Array;
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axiom toIxwiseRule(u: Array , v: Array ,
u0: Array , u1: Array , u2: Array) {

a s s e r t substep(u, v, u0, u1, u2) ==
schedule(u, v, u0 , u1, u2);

}
}

Magnolia does not expose native looping constructs. For that reason, the implementation of

schedule is done in the host language, and imported through ExtBasicSchedule. From that

point onwards, we can use MoA’s transformation rules on our program.

4.3.2.1 Reusability of Modules

Of the modules presented in Listings 4.6, 4.7, and 4.8, PDEProgramMoA is the only one that

is completely problem-specific. The ToIxwise and ToIxwiseGenerator concepts’s types and

operations are given names that relate to our domain of application. Due to the renaming feature

however, specific names within a module are largely irrelevant: two signatures that expose the same

set of types and operations (and overloads) up to renaming (of types and operations) can be made to

match.

For example, the ToIxwise concept states that there exists two functions with the same prototype

(they take in five arguments of the same type that is also the return type), such that calling one of them

is equivalent to calling the other. Listing 4.9 shows a more generic presentation of the ToIxwise
concept.

Listing 4.9: A domain-generic formulation of the ToIxwise concept.

c o n c e p t FunctionEquality5 = {
type T;
f u n c t i o n f(t1: T, t2: T, t3: T, t4: T, t5: T): T;
f u n c t i o n g(t1: T, t2: T, t3: T, t4: T, t5: T): T;

axiom functionEqualityRule(
t1: T, t2: T, t3: T, t4: T, t5: T) {

a s s e r t f(t1, t2, t3, t4, t5) == g(t1 , t2 , t3 , t4, t5);
}

}

// ToIxwise can be defined from FunctionEquality5 , and
// vice -versa.
c o n c e p t ToIxwise =

FunctionEquality5[ f => substep
, g => schedule
, T => Array
, functionEquality5Rule => toIxwiseRule
];

The FunctionEquality5 concept can be further generalized by taking in arguments of five different
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types, and returning an element of a sixth different type—all of which would be mapped to Array for

defining ToIxwise. The concept could also be stated more concisely for any number of arguments

using variadics. Magnolia does not support variadics today, but the feature is a desired future language

extension [38].

The listings in the rest of the paper follow the same pattern. We present Magnolia program definitions

that apply specific rewrite rules in a specific way and are completely problem-specific, and Magnolia

concept definitions that specify reusable rewriting systems and are completely problem-independent.

4.3.2.2 Hardware-Agnostic Transformation Rules

The next step outlined in Figure 4.2 is to reduce the MoA expression we just constructed to its

DNF. Rewriting rules at the DNF level do not require hardware knowledge, and therefore constitute

hardware-agnostic transformation rules. Listing 4.10 shows how we achieve this transformation in

Magnolia. The DNFRules concept is spelled out in Listing 9, which can be found in Appendix 3.3.

The choice of applying the rewrite rules defined in DNFRules twenty times is carefully made by the

developer, and leads to the full reduction of the MoA expression produced previously to its DNF.

Listing 4.10: Transforming the MoA expression to its DNF.

program PDEProgramDNF =
rewrite PDEProgramMoA with DNFRules 20;

The DNF reduction rules discussed here mirror the specification presented in Listing 4.4 for the

arithmetic operations of the API, and are completely reusable for any program based on this API.

These axioms describe for each operation the content of the resulting array at each index, turning

the array from a large opaque block to a function from its index space to its content. Applying

the DNF rules pushes computations down from the array-level to the index-level, i.e. the resulting

computations are devoid of whole-array operations and contain only indexing and scalar arithmetic

operations. This can be thought of as loop fusion, or also as some kind of function composition.

The external schedule implemented in Listing 4.6 describes how the indexwise computation is executed

on the underlying hardware. The psi function is also given an external implementation that thus

describes how the arrays are actually laid out in memory. This hardware “specialization” gives us an

initial executable OF—as outlined in Figure 4.2. For the sake of completeness, our (non-specific) C++

implementation of schedule is shown in Listing 11 (available in Appendix 3.3).

The reduction of our MoA expression to its DNF (and resulting “default” OF) already leads

to significant performance improvements. Table 4.1 shows runtime results for our PDE solver

implementation in Magnolia, before and after full DNF reduction using the DNF rewriting rules.

The baseline implementation shown here is a direct lowering of the program written in Magnolia to

C++, and we do not perform any transformation beyond what is offered by g++’s optimization level

O3 (for the CPUs) and what is offered by nvcc by default (for the GPU). Every array is allocated on

the heap, and every intermediate array in the computation is materialized—resulting in a baseline

that is inefficient. DNF reduction speeds up the code by a factor between roughly 5.78× and 14.11×
depending on the targeted device, and significantly reduces memory usage. At the DNF level, the

expression is written in terms of scalar and indexing operations, eliminating the costly need to compute

temporary arrays, and increasing computational density.
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This experiment shows that such a rewriting system gives the ability to write programs using whole-

array operations without losing out on the benefits of writing index-level code. The ability to

write algorithms in different ways without inducing a loss of performance is key to the productive

development of performant code.

CPU 1 CPU 2 GPU

Before DNF reduction 2622.09 3494.35 8.75

After DNF reduction 312.10 604.25 0.62

Table 4.1: Execution time (in seconds) of the 3-dimensional PDE solver Magnolia implementation

compiled to C++, with and without reduction to DNF. The code is compiled with g++ 10.2.0 with

optimization level O3 for the CPU runs; it is compiled with nvcc 11.6 for the GPU runs. The space

dimensions are 512× 512× 512 and the solver is run for 50 timesteps. The code is run 5 times on each

device, and the time measurements are averaged. CPU 1: Intel Xeon Silver 4112, CPU 2: ThunderX2

CN9980, GPU: NVIDIA A100.

4.3.2.3 Hardware-Specific Transformation Rules

Which hardware-specific transformation rules are relevant to implement is by nature dependent on

the underlying hardware architecture we are interested in. For example, Chetioui et al.’s previous

work on formalizing PDE computations in MoA gave rise to rules for introducing padding into

array expressions [37]. Their work also discusses rewrites rules that use the dimension lifting
operation, which is a reshape operation with the explicit purpose of matching the shape of arrays with

characteristics of the underlying hardware—more commonly called array partitioning. E.g. lifting by

d1 across the first axis allows one to scatter the resulting subarrays across d1 processes; or, lifting by 4

across the last axis of an array of 32-bit floats allows one to vectorize computations on an architecture

with 128-bit vector registers. The hardware architecture combined with the data dependencies of the

algorithm determine the shape and layout of the arrays.

We discuss an example of a hardware-dependent rewriting system for padding below.

Example: Padding computations Our example assumes a toroidal space—i.e. the first element

is a neighbor of the last element for each dimension. Figure 4.3 shows the dependency patterns for

one third of a half-step of the PDE across the last axis of the array. The element at index i at time

t + 1 depends on the elements at index i, (i − 1) mod N , and (i + 1) mod N at time t. The modulo

operation serves to index the right dependencies for the first (respectively last) element of the array,

where decrementing (respectively incrementing) the index would create an out-of-bounds index.

Modulo operations are still expensive, even on modern hardware [117]. Additionally, if N is large,

the computations at the boundary need to access elements that are far apart in memory—therefore

benefitting less from data locality than the computations in the middle of the array.

How boundaries are handled in our computation is not relevant for our previous rewrite rules.

However, Chetioui et al. showed that padding is a way to eliminate these modulo computations and

to increase data locality for such dependency patterns, at the cost of duplicating data in memory [37].

Figure 4.4 shows the dependency patterns for one third of a half-step of the PDE across the last axis

of the array when the array is padded. In that case, the computation at the boundaries of the array
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t

0

1

. . .

N − 2

N − 1

t + 1

. . .

t + 2

. . .

Figure 4.3: The dependency pattern for one third of a half-step of the PDE across the last axis of

the array. Each column represents an array of length N indexed from 0 to N − 1 for a given timestep.

The element at index i of the array at time t + 1 depends on the elements at indices i, (i − 1) mod N
and (i + 1) mod N of the array at time t.

can be rewritten to depend on three adjacent elements in the array. The modulo computation can

also be eliminated. We pay for these improvements by using more space, and by refilling the padding

before every timestep.

Listing 4.11 shows one way of introducing padding in the PDEProgramDNF program introduced

in Listing 4.10. We truncate some of the modules in the following listings so as not to clutter the

presentation, and add corresponding listings containing the full modules to Appendix 3.3 for the sake

of completeness.

Listing 4.11: Introducing padding into PDEProgramDNF. The full specification of OFPad can be

found in Listing 12.

program PDEProgramPadded = {
use (rewrite PDEProgramDNF with OFPad 1);
// imports a new schedule , a new function for index
// rotation , and a procedure for refilling padding
use ExtExtendPadding;

}

c o n c e p t OFPad = {
...
procedure refillPadding(upd a: Array);
f u n c t i o n schedulePadded(u: Array , v: Array ,

u0: Array , u1: Array , u2: Array)
: Array;

f u n c t i o n schedule(u: Array , v: Array ,
u0: Array , u1: Array , u2: Array): Array;

axiom padRule(u: Array , v: Array ,
u0: Array , u1: Array , u2: Array) {
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Figure 4.4: The dependency pattern for one third of a half-step of the PDE across the last axis of the

array when the array is padded once on each side on the last axis. Each column represents an array of

length N indexed from 0 to N − 1 for a given timestep. The elements colored in the same color have

the same value. The element at index i of the array at time t + 1 depends on the elements at indices i,
i − 1 and i + 1 of the array at time t.



4

134 P3 Problem and Magnolia Language

a s s e r t schedule(u, v, u0, u1, u2) ==
{ var result = schedulePadded(u, v, u0 , u1 , u2);

c a l l refillPadding(result );
v a l u e result;

};
}

f u n c t i o n rotateIx(ix: Index , axis: Axis , offset: Offset)
: Index;

f u n c t i o n rotateIxPadded(ix: Index , axis: Axis ,
offset: Offset ): Index;

axiom rotateIxPadRule(ix: Index , axis: Axis ,
offset: Offset) {

a s s e r t rotateIx(ix, axis , offset) ==
rotateIxPadded(ix, axis , offset );

}
}

The transformations given by OFPad act on the OF of the program. The transformation rules

replace calls to rotateIxwith calls to rotateIxPaddedwithin the implementation of substepIx,

and calls to schedule with calls to schedulePadded succeeded by an operation refilling the

padding within the implementation of step. The resulting step procedure is shown in Listing 14

in Appendix 3.3. Likewise, the schedule is now replaced by one that is mindful of padding—

whose C++ implementation is shown in Listing 13 in Appendix 3.3. The result is a program with

a different—a priori more optimized—OF. The rewrites correspond to the last transformation step

in the methodology presented in Figure 4.2.

Our implementation in Listing 4.11 assumes that the input arrays are padded arbitrarily across each axis

in the host language, in a way that is compatible with the new rotateIxPadded function. Details

such as the amount of padding across each axis are therefore not visible in Magnolia. This is however

purely a design choice, insofar as we have chosen to make the Index type completely opaque. This

has the benefit of making the program naturally shape polymorphic to a degree—though the program

is not as interesting for input arrays with initial number of dimensions different than three.

We can control padding across each axis more explicitly by specializing our code further. This can also

be achieved using transformation rules, as is shown in Listing 4.12.

Listing 4.12: Adding padding to and specializing PDEProgramDNF to 3 dimensions.

program PDEProgram3DPadded = {
use (rewrite

(rewrite
(rewrite

(rewrite
(implement OFSpecializeSubstepGenerator in

PDEProgramDNF)
with OFSpecializePsi 10)

with OFReduceMakeIxRotate 20)
with OFPad[schedulePadded =>

schedule3DPadded] 1)
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with OFEliminateModuloPadding 10);

use ExtScalarIndex; // pulling in ScalarIndex utils
use ExtAxisLength; // pulling in AxisLength utils
use ExtSpecializeBase; // pulling in psi
use Ext3DSchedule; // pulling in schedule3DPadded

}

The content of OFSpecializeSubstepGenerator is shown in Listing 4.13. The concept contains

an axiom following the generator pattern to specialize the shape polymorphic substepIx to three

dimensions. As previously, the call to substepIx on the right-hand side of the equation is unfolded

to enable additional optimizations.

Listing 4.13: A generator for a 3D implementation of substepIx. The full specification of the concept

can be found in Listing 15.

c o n c e p t OFSpecializeSubstepGenerator = {
...
f u n c t i o n mkIx(i: ScalarIndex , j: ScalarIndex ,

k: ScalarIndex ): Index;
f u n c t i o n substepIx(u: Array , v: Array ,

u0: Array , u1: Array , u2: Array , ix: Index): Float;
f u n c t i o n substepIx3D(u: Array , v: Array ,

u0: Array , u1: Array , u2: Array ,
i: ScalarIndex , j: ScalarIndex , k: ScalarIndex)

: Float;

axiom specializeSubstepRule(u: Array , v: Array ,
u0: Array , u1: Array , u2: Array ,
i: ScalarIndex , j: ScalarIndex , k: ScalarIndex) {

a s s e r t substepIx3D(u, v, u0, u1, u2, i, j, k) ==
substepIx(u, v, u0, u1, u2, mkIx(i, j, k));

}
};

Recall the original implementation of substepIx given in Listing 10. Every indexing operation

of some array a in the resulting implementation of substepIx3D is now either of the form

psi(mkIx(i, j, k), a), or of the form psi(rotateIx(mkIx(i, j, k), x, o), a) for

some axis x and some offset o.

The OFSpecializePsi (shown in Listing 4.14) then introduces a specialized psi function for 3D

arrays. It does that by introducing three projection functions ix0, ix1, and ix2 on Indexes. General

indexing operations of the form psi(mkIx(i, j, k), a) are first specialized to expressions of

the form psi(ix0(mkIx(i, j, k)), ix1(mkIx(i, j, k)), ix2(mkIx(i, j, k)), a)
by an application of specializePsiRule—which can then be reduced to psi(i, j, k, a) via

three applications of reduceMakeIxRule.

Listing 4.14: Specializing calls to the indexing function ψ . The full specification of the concept can

be found in Listing 16.

c o n c e p t OFSpecializePsi = {
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...
type ScalarIndex;

f u n c t i o n ix0(ix: Index): ScalarIndex;
...

f u n c t i o n mkIx(i: ScalarIndex , j: ScalarIndex ,
k: ScalarIndex ): Index;

f u n c t i o n psi(i: ScalarIndex , j: ScalarIndex ,
k: ScalarIndex , array: Array ): E;

axiom specializePsiRule(ix: Index , array: Array) {
a s s e r t psi(ix, array) ==

psi(ix0(ix), ix1(ix), ix2(ix), array );
}

axiom reduceMakeIxRule(i: ScalarIndex , j: ScalarIndex ,
k: ScalarIndex) {

var ix = mkIx(i, j, k);
a s s e r t ix0(ix) == i;
a s s e r t ix1(ix) == j;
a s s e r t ix2(ix) == k;

}
}[ E => Float ];

We also want to call our specialized version of psi instead of the general one

in expressions now of the form psi(ix0(rx), ix1(rx), ix2(rx), a) where

rx = rotateIx(mkIx(i, j, k), x, o). For that purpose, we apply the rewriting rules

defined in OFReduceMakeIxRotate—shown in Listing 4.15. These rewriting rules essentially

unfold rotateIx. All the indexing operations in substepIx3D now use the specialized form of

psi, and the scalar indices are either constants or of the form (i + o) % s, with i a scalar index, o
an offset, and s the length of the relevant axis of the array.

Listing 4.15: A rewriting system to specialize the index rotation operation. The full specification of

the concept can be found in Listing 17.

c o n c e p t OFReduceMakeIxRotate = {
...

f u n c t i o n rotateIx(ix: Index , axis: Axis , offset: Offset)
: Index;

type AxisLength;
f u n c t i o n shape0 (): AxisLength;
...

f u n c t i o n _+_(six: ScalarIndex , o: Offset ): ScalarIndex;
f u n c t i o n _%_(six: ScalarIndex , sc: AxisLength)

: ScalarIndex;
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axiom reduceMakeIxRotateRule(i: ScalarIndex ,
j: ScalarIndex , k: ScalarIndex , o: Offset) {
var ix = mkIx(i, j, k);

a s s e r t ix0(rotateIx(ix, zero(), o)) ==
(i + o) % shape0 ();

a s s e r t ix0(rotateIx(ix, one(), o)) == i;
a s s e r t ix0(rotateIx(ix, two(), o)) == i;
...
a s s e r t ix1(rotateIx(ix, one(), o)) ==

(j + o) % shape1 ();
...
a s s e r t ix2(rotateIx(ix, two(), o)) ==

(k + o) % shape2 ();
}

}

At this point, we can reintroduce padding using the rules previously defined in Listing 4.11, and

renamingschedulePadded toschedule3DPadded. As we are in the case when an implementation

for schedulePadded is not in scope before the rules defined in OFPad are applied, we can replace

the rewrite by a simple renaming—as shown in Listing 4.12.

We decide to implement this function externally such that the array is always circularly padded

at least once on each side of each axis — a decision made based on the width of the stencil.

With that knowledge, we can completely eliminate the modulo operations in substepIx3D. The

OFEliminateModuloPadding concept (shown in Listing 4.16) defines the relevant rewriting rules.

Listing 4.16: Elimination of the modulo operations in the program. The full specification of the

concept can be found in Listing 18.

// We suppose here that the amount of padding is sufficient
// across each axis for every indexing operation.
c o n c e p t OFEliminateModuloPadding = {

...
f u n c t i o n psi(i: ScalarIndex , j: ScalarIndex ,

k: ScalarIndex , a: Array): Float;

axiom eliminateModuloPaddingRule(i: ScalarIndex ,
j: ScalarIndex , k: ScalarIndex , a: Array , o: Offset) {
a s s e r t psi((i + o) % shape0(), j, k, a) ==

psi(i + o, j, k, a);
a s s e r t psi(i, (j + o) % shape1(), k, a) ==

psi(i, j + o, k, a);
a s s e r t psi(i, j, (k + o) % shape2(), a) ==

psi(i, j, k + o, a);
}

}

Table 4.2 gives an overview of the performance variations for four different implementations, all
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produced by the application of rewriting rules on our original solver implementation presented in

Listing 4.5. We briefly describe the resulting implementations below.

DNF reduction This implementation is the same as PDEProgramDNF as described in Listing 4.10.

DNF reduction + Padding This implementation adds padding to PDEProgramDNF, i.e. it is the

same as PDEProgramPadded as described in Listing 4.11.

DNF reduction + Index specialization This implementation is a version of PDEProgramDNF in

which each element of type Index is transformed into three elements of type ScalarIndex, e.g. a

call of the form psi(ix, a) is transformed into a call of the form psi(i, j, k, a), and rotation

along a specific axis is implemented as a modular addition over that axis.

DNF reduction + Index specialization + Padding This implementation is a version of

PDEProgramPadded in which elements of type Index are also decomposed into three elements

of type ScalarIndex. It is assumed that each axis is padded sufficiently such that rotation can be

implemented as a non-modular addition.

On both CPUs, the performance variation follows the same pattern. The fastest runs are achieved by

the padded versions of the baseline implementation with DNF reduction applied, and its counterpart

with also specialized indexing. In the unpadded case, the version of the code that incorporates

specialized indexing runs faster—1.22× faster on CPU 1, and 1.08× faster on CPU 2. As outlined above,

we expect padded implementations to perform better due to increased data locality at the boundaries

of the computations. On the GPU considered, the variations are different: the unpadded programs

(with or without specialized indexing) perform best. We conclude that this is due to additional calls

to the expensive cudaMemcpy in the implementation of replenishPadding—which add a cost to

the computation that is not offset by the expected benefits of padding.

CPU 1 CPU 2 GPU

DNF reduction 312.10 604.25 0.62

DNF reduction + Padding 190.46 311.52 0.91

DNF reduction + Index specialization 256.64 561.95 0.63

DNF reduction + Index specialization + Padding 190.95 313.22 0.91

Table 4.2: Execution time (in seconds) of the 3-dimensional PDE solver Magnolia implementation

compiled to C++ with specialized indexing and with or without padding. The code is compiled with

g++ 10.2.0 with optimization level O3 for the CPU runs; it is compiled with nvcc 11.6 for the GPU runs.

The space dimensions are 512 × 512 × 512 and the solver is run for 50 timesteps. In the padded case,

each axis is padded circularly exactly once on both ends. The code is run 5 times on each device. CPU

1: Intel Xeon Silver 4112, CPU 2: ThunderX2 CN9980, GPU: NVIDIA A100.

Crucially, the performance improvements and variations we observe here did not require any

reimplementation of the core algorithm. Building our core algorithm generically allows us to introduce

specialized underlying types and operations, once more information is known about our input data

or the underlying hardware architecture. The Magnolia term rewriting engine then allows us to

introduce new operations and to replace calls to existing concrete implementations with calls to other

functions with possibly different argument lists.
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This is another twist of generic programming: rewrite and implement allow to replace operations (or

combinations of operations) in a generic module with others that have potentially different argument

lists — so long as we can describe the behavior of the former at all points in terms of calls to the new

operation(s).

4.4 Discussion and Related Work

We presented a methodology for solving the P
3

problem on existing and emerging architectures and

applied it to the domain of array computations. Instead of developing one program to target n
hardware architectures, we implement a single program, along with hardware-specific rewriting rules.

By relating the high-level problem to a mathematical basis, we ensure that the set of optimization rules

we implement is correct, and reusable for problems that can be embedded within the same formalism.

For example, the exact set of optimization rules we defined may be reused with other explicit finite

difference solvers—and likely for stencil computations in general—as these are problems for which

Burrows et al.’s API is suitable [28].

Magnolia gives developers the tools to write high-level, domain-specific compilers with custom

optimization rules, and a custom target language. The ability to choose flexibly to which opaque

building blocks a Magnolia program reduces allows the application of optimization rules at various

abstraction levels, until the boundary between Magnolia and the external primitives implemented in

the host language is reached. Our approach is centered around the idea of expressing generic algorithms

independently from any particular schedule, i.e. independently from any hardware abstraction.

As we mentioned in Section 4.1.1, the term schedule as used throughout the paper originates in

the work of Ragan-Kelley et al. on Halide [149]. SPIRAL [146] and Sequoia [54] predate Halide,

but make a similar distinction between an algorithm and its mapping to the underlying hardware

architecture. Halide exposes a set of scheduling primitives from which developers can build their own

schedules. TVM [34] follows this idea and extends Halide’s set of scheduling primitives. The set of

schedules that can be expressed in such systems is necessarily limited by the set of available scheduling

primitives. Extending this set requires modifications to the language and its compiler, and is thus

costly. Recent work by Liu et al. shows that carefully choosing high-level rewriting rules on schedules

allows optimizing tensor programs beyond what is currently possible in these languages [120]. Exo

allows for expressing schedules for different hardware targets through composable rewrites and user-

defined hardware abstractions [99]. Ikarashi et al. note that adding support for new hardware using a

library approach (as in Exo) appears to require one order of magnitude less development time than in

systems like Halide or TVM. In our system, schedules are fully specified by the developer—similarly

to the work of Ikarashi et al.. Compared to the approach taken by Halide or TVM, the developer has

full control over how their computations are executed, but incur a higher implementation cost when

no scheduling algorithm exists for their particular flavor of target hardware architecture. Adding

“default” scheduling primitives to Magnolia as a convenience could improve the developer experience,

and is therefore a consideration for future work.

MLIR [115] makes heavy use of rewrite rules through the MLIR PatternRewrite infrastructure [173].

Their design is influenced by LIFT [166; 167], another programming language exploiting rewrite rules

for high-performance array computations. In LIFT, the application of rewrite rules is automated

by a stochastic search method. Hagedorn et al. extend LIFT specifically for optimizing stencil

programs [81]. Such rewrite approaches are so far limited in that they do not always deliver high
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enough performance for real-world use [82]. This is in contrast to autoscheduling in Halide, which

outperforms human experts on average [9]. Automatic scheduling techniques are key to improving

solutions to the P
3

problem, and are thus an important topic to further explore also for rewrite

rules-based optimizers.

Approaches to optimization based on rewrite rules, such as the one presented here, can benefit from

rewriting strategies, e.g. for localizing rewrites to only a particular chunk of the input program or for

traversing the AST in a specific order. Kirchner gives a recent survey of strategic rewriting [105].

Example of tools implementing such strategies include Maude [44; 122; 123] and Stratego [175].

Hagedorn et al. introduce a functional approach to high-performance code generation based on

rewriting strategies [82]: computations are expressed in the RISE programming language, and rewrite

rules and strategies in the ELEVATE strategy language. Fu et al. [58] later added a type system to

ELEVATE to ensure statically that rewrites are composed correctly. As shown throughout the paper,

our rewriting system today only provides the ability to apply sets of rewrite rules a certain number of

times, in sequence. Given a rule e1 = e2, the sequence e1; e1 can be rewritten to e2; e1, but not directly

to e1; e2. Such a transformation can be expressed today by applying the rule e1 = e2 twice, and then

applying the opposite rule e2 = e1 once, but this is both embarassingly verbose and inefficient. Adding

rewriting strategies to Magnolia will unlock those rewrites that are not easily accessible today, and

thus further improve the system’s code reuse capabilities. The implementation of Magnolia strategies

is of particular interest, and fits into our larger project of exploring module transformations through

the lens of Syntactic Theory Functors [87].

For future work, we also envision the implementation of an extension to the Magnolia rewriting

system that supports conditional rewrite rules. Conditional equations can already be expressed in

Magnolia, but the rewriting system is not yet able to exploit them.

Whether axioms constitute valid rewriting rules is verifiable by extending Magnolia with formal

verification tools—insofar as the relevant properties that a program must satisfy can be derived

from the stated axioms about its external building blocks. The properties asserted about externally

implemented code can however only be assumed to hold, and constitute the trusted computing base

of the whole program. Work on connecting verification tools with Magnolia’s specification facilities

is already underway, with encouraging results [83].
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Concluding remarks

The work presented in this dissertation shows that the marriage of “classic” generic programming with

property-based specifications yields programming languages that are well positioned for driving down

the cost of constructing high quality software. Key to this positioning are the additional opportunities

for reuse that property-based specifications unlock.

The empirical evidence gathered through the several experiments presented in this thesis shows that

generic programming and abstraction are not antithetical to performance. Even further, Paper 4

shows a methodology aimed for tackling the P
3

(performance, portability, and productivity) problem

using Magnolia. Despite the success of our investigations, many more research directions remain

unexplored. The below suggests directions that the line of research pursued in this dissertation should

take going forward.

The learnings extracted from Magnolia have already found their way to influence the design of

generics in a mainstream programming language: Fortran [91]. An overarching question throughout

the course of my research project was how we could go beyond building an experimental research

language, and put Magnolia itself in the hands of real users—those that Mary Shaw dubs vernacular
programmers in her inspiring HOPL IV keynote address “Myths and mythconceptions: what does it
mean to be a programming language, anyhow?” [158]. If we want to concretize on our goal of making

the construction of high quality software less costly with Magnolia, then the language needs to find a

user base—it can’t raise the quality of software across the board if it isn’t used. This question guided

many of the design choices throughout the development of magnoliac. It encouraged me to strive

to produce a compiler not merely functional, but instead a properly engineered and documented

software artifact. I have not succeeded yet—as of today, I am not aware of any non-research project

using or building atop Magnolia or magnoliac.

From a purely pragmatic perspective, the ease of connecting a tool with a user base seems to mainly

depend on the answers to two questions. First, how much immediate value does the tool provide to its

target audience? Second, how much additional pain does using the tool cause to its target audience?

The astute reader may notice that a tool that puts generic programming as its core value proposition

is ill-positioned on these two questions by design: making use of the tool immediately brings new

challenges (even if only that of learning to use it), but does not yield tangible value until it has enabled

a critical amount of code reuse.

For Magnolia to achieve the ambitious goal of finding a user base of vernacular programmers, it needs
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a clear value proposition on which users could capitalize very early. Our work in Paper 4 goes in the

way of producing such a value proposition: it exploits Magnolia’s generic programming facilities

to construct programs that can be retargeted to and optimized for different hardware platforms by

designing and applying arbitrary transformation rules defined directly in Magnolia. That value needs

to be contrasted with the difficulties that are simultaneously introduced by the use of Magnolia.

3.1 Some Difficulties of Magnolia Development

Magnolia programming can be challenging. We identify here some sharp bits of Magnolia

development, and offer some ideas to smooth them out and improve the development experience.

3.1.1 What is in a Module?

A challenge we often encounter when programming with Magnolia is keeping track of what is in

scope for a given module. Paper 1 mentions this issue.

We usually intend to build sophisticated modules in Magnolia by combining many smaller modules—

in order to reuse components as much as possible. Sophisticated implementations end up containing

many declarations—including some that do not yet have an associated definition. This does not cause

any visible issue until we try to produce a program from a sophisticated implementation.

Because a program has the additional constraint that every single declaration it contains must have

an associated definition, we frequently run into compiler errors indicating that declarations in the

program’s scope that we don’t particularly care about or need are missing a definition. In that case,

the right fix is to provide such a definition, but where to do so is often unclear. E.g., we may have

forgotten to rename the declaration at some point to unify it with another definition—but where

exactly should we have done that? This depends on where the declaration came from, and which

renamings were applied to it, etc.

The problem we highlight here calls for a good Integrated Development Environment (IDE) that

would help users cope with the singular challenges of the language. This is not a groundbreaking

discovery, nor a controversial argument: Bagge’s work on providing a Magnolia IDE in Eclipse was

motivated by similar concerns [14; 16], and magnoliac specifically captures some metadata during the

checking phase in order to make it easier to eventually integrate it with an IDE.

Another issue worth highlighting here is that Magnolia programs end up exposing an interface that is

often wider than the one that was intended. To handle this, we may want to augment Magnolia with

support for some kind of encapsulation. OCaml’s module sealing [41, Chapter 5, Section 4] spring to

mind as a possible source of inspiration.

3.1.2 No Ad-Hoc Programming in Magnolia

Producing generic code in Magnolia is no more complicated than producing ad-hoc, specialized code—

but producing ad-hoc, specialized code in Magnolia is typically harder than in other programming
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Listing 3.1: A functional implementation of fizzbuzz. The doFizzbuzz function takes an integer

as input, and returns fizz() if it is divisible by 3, buzz() if it is divisible by 5, and fizzbuzz() if it

is divisible by both 3 and 5. Unlike in the usual implementation, doFizzbuzz is not called on a range

of integers, and does not directly print to the output. This is because it makes the implementation

simpler in Magnolia. The primitive types and operations necessary to the program are implemented

in C++.

package fizzbuzz;

implementat ion IntegerType = e x t e r n a l C++ base.integer_type {
type Int;
f u n c t i o n zero (): Int;
f u n c t i o n three (): Int;
f u n c t i o n five (): Int;
f u n c t i o n modulo(a: Int , modulus: Int): Int;

}

implementat ion FizzbuzzOps =
e x t e r n a l C++ base.fizzbuzz_ops {

type Fizzbuzz;
f u n c t i o n fizz (): Fizzbuzz;
f u n c t i o n buzz (): Fizzbuzz;
f u n c t i o n fizzbuzz (): Fizzbuzz;
f u n c t i o n nope (): Fizzbuzz;

}

program Fizzbuzz = {
use FizzbuzzOps;
use IntegerType;

f u n c t i o n doFizzbuzz(i: Int): Fizzbuzz =
i f modulo(i, three ()) == zero() &&

modulo(i, five ()) == zero()
then fizzbuzz ()
e l s e i f modulo(i, three ()) == zero() then fizz()
e l s e i f modulo(i, five ()) == zero() then buzz()
e l s e nope ();

}

languages. This is an obstacle to using Magnolia in workflows involving iterative experimentation.

Listing 3.1 shows a possible functional implementation of fizzbuzz in Magnolia.

The implementation consists of over 30 lines of Magnolia code, along with the implementation of

the base.integer_type and base.fizzbuzz_ops data structures in C++. These two definitions

appear in a different C++ source file, and mirror the declarations in IntegerType and FizzbuzzOps.

In an ideal world, IntegerType would already be provided by Magnolia’s standard library, but

FizzbuzzOps (being a very ad-hoc data structure) wouldn’t.
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With such a standard library made available, the main remaining challenge would be the connection

of Magnolia code to the underlying host language and the code duplication it introduces.

One suggestion to make this effortless for the user is to allow inlining blocks of Magnolia code inside

a host-language source file, and to automatically generate external modules from the host-language

source code. This would allow users to start writing experimental Magnolia code easily from within

an existing codebase, while benefitting freely from everything that was already defined in the host

language.

3.2 Where Magnolia could Deliver Value

3.2.1 Fuzzing and Property-Based Testing

Fuzzing consists in generating random inputs and feeding them to a test oracle. Fuzzing is a popular

technique for hardening complex and critical pieces of software, e.g. compilers [181].

Property-based testing is a form of targeted fuzzing, where the test oracle validates that properties of

the software under test hold for the generated inputs. Property-based testing is a widely used testing

technique, thanks to popular libraries like e.g. QuickCheck [40] in Haskell, or Hypothesis [121] in

Python.

Property-based testing is another use case for Magnolia’s property-based specifications. Given a

satisfaction relation asserting that an implementation models a concept, we can automatically derive

property-based tests for that implementation. Thanks to Magnolia’s parametrized modules and its

genericity by host language, a relevant satisfaction relation can be used to generate property-based tests

for any refinement of the modeling implementation across host languages. This offers one additional

opportunity for reuse: that of generated property-based test suites.

Introducing Magnolia into a codebase as a testing tool rather than as a development tool also seems like

an easier sell. Testing code is typically well decoupled from implementation code. There is therefore

no need to intertwine existing code with Magnolia code. One only needs to express the relevant

specifications and to define relevant external implementations in Magnolia to start harnessing the

outlined benefits.

Bagge and Haveraaen already used axioms for property-based testing in their paper “Axiom-Based
Transformations: Optimization and Testing” [17], and later also in “Testing with Axioms in C++

2011” [20] in collaboration with David. This line of research seems impactful, and deserves to be

explored further.

3.2.2 Dynamically Selecting Concept Implementations

When writing programs, developers often have several valid alternatives to choose from for data

structures and algorithms. For instance, there exists many different implementations for the concept

of a map, and different algorithms to perform a sort.
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Choosing the right implementation is not always easy, and often depends on characteristics of the

data that is being processed. For instance, while a hashmap is commonly used to implement fast

key-based lookups, there are many cases in which the data structure’s performance ends up being

subpar. For instance, when there is very little data to search through, a contiguous list of key-value

pairs may have better runtime characteristics. Similarly for sort, it is common to use an insertion sort

implementation when sorting very small arrays, even though quicksort would be a better alternative

in the more general case.

Magnolia allows us to document the syntactic and semantic requirements of our data types and

algorithms, and to make them requirements of implementation parameters. Given a precise enough

specification, and leveraging the renaming mechanism, it becomes possible to use constructs modeling

the same requirements interchangeably. Given a host of such specifications and implementations, a

compiler equipped with profile-guided optimization facilities would be able to—over time—produce

a program where all the data structures and algorithms are the most appropriate for the program’s

purposes.

Promising work in this direction already materialized in Qin, O’Connor, and Steuwer’s paper Primrose:
Selecting Container Data Types by Their Properties [147].

3.3 Onwards

Property-based specifications can be used to make software better. This dissertation leveraged them

successfully to exploit additional kinds of reuses inaccessible to generic programming facilities that

do not offer property-based specifications. Reuse is a tried-and-true method to raise the quality of

software, and property-based specifications thus appear to be a desired feature to make available in

programming languages on the path towards practical high quality software. However, constructing a

programming language that can use them effectively and practically is far from being a solved problem.

It is commendable how mainstream programming languages have managed to construct useful and

effective generic programming facilities while completely side-stepping the many difficulties associated

with using property-based specifications.

I hope that the research presented here will contribute to making genericity by property a more

compelling choice of paradigm for language implementers in the future, and a stepping stone towards

practical high quality software.
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Listing 2: Example of tension between overloading and subsorting in Maude specifications (adapted

from an example by Ölveczky [142, Chapter 2.5]). When calling f on an argument of type s12, Maude

can not determine which overload of f should be called.

1 fth OVERLOADING is
2 sorts s1 s2 s12 u1 u2 .
3 op f : s1 -> u1 .
4 op f : s2 -> u2 .
5 endfth
6

7 fth SUBSORTING is
8 including OVERLOADING .
9 subsorts s12 < s1 s2 . --- error!

10 endfth
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Listing 3: Implementation of generic BFS utils in Magnolia.

implementat ion GenericBFSUtils = {
/* snip types and helper operation declarations */
procedure breadthFirstVisit(obs g: Graph ,

obs s: VertexDescriptor , upd a: A, upd q: Queue ,
upd c: ColorPropertyMap) {

c a l l discoverVertex(s, g, q, a);
c a l l push(s, q);
c a l l put(c, s, gray ());
c a l l bfsOuterLoopRepeat(a, q, c, g);

}

p r e d i c a t e bfsOuterLoopCond(a: A, q: Queue ,
c: ColorPropertyMap , g: Graph) {

v a l u e !isEmptyQueue(q);
}

procedure bfsOuterLoopStep(upd x: A, upd q: Queue ,
upd c: ColorPropertyMap , obs g: Graph) {

var u = front(q);
c a l l pop(q);
c a l l examineVertex(u, g, q, x);
var edgeItr: EdgeIterator;
c a l l outEdges(u, g, edgeItr );
c a l l bfsInnerLoopRepeat(edgeItr , x, q, c, g, u);
c a l l put(c, u, black ());
c a l l finishVertex(u, g, q, x);

}

procedure bfsInnerLoopStep(obs edgeItr: EdgeIterator ,
upd x: A, upd q: Queue , upd c: ColorPropertyMap ,
obs g: Graph , obs u: VertexDescriptor) {

var e = edgeIterUnpack(edgeItr );
var v = tgt(e, g);
c a l l examineEdge(e, g, q, x);
var vc = get(c, v);
i f vc == white() then {

c a l l treeEdge(e, g, q, x);
c a l l put(c, v, gray ());
c a l l discoverVertex(v, g, q, x);
c a l l push(v, q);

} e l s e i f vc == gray() then {
c a l l grayTarget(e, g, q, x);

} e l s e { // vc == black ();
c a l l blackTarget(e, g, q, x);

};
}

}
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Listing 4: Implementation of a DFS in Magnolia.

implementat ion DFS = {
// LIFOQueue
use GraphSearch[ search => depthFirstSearch , front => top ,

isEmptyQueue => isEmptyStack , Queue => Stack ];
use Stack[ A => VertexDescriptor ,

isEmpty => isEmptyStack ];
}

Listing 5: User-provided (hand-coded) implementation of a stack in C++.

t e m p l a t e < typename _A >
s t r u c t stack {

t y p e d e f _A A;
t y p e d e f std::stack <A> Stack;

Stack empty () { r e t u r n Stack (); }
bool isEmpty( c o n s t Stack &s) { r e t u r n s.empty (); }
void push( c o n s t A &a, Stack &s) { s.push(a); }
void pop(Stack &s) { s.pop(); }
c o n s t A &top( c o n s t Stack &s) { r e t u r n s.top(); }

};

Listing 6: User-provided (hand-coded) implementation of a stack in Python.

def stack(A):
c l a s s Stack:

def __init__(self): self.stack = []
def isEmpty(self): r e t u r n not self.stack
def push(self , a: A): self.stack.insert(0, a)
def pop(self): self.stack = self.stack [1:]
def top(self): r e t u r n deepcopy(self.stack [0])
def mutate(self , other): self.stack = other.stack [:]

def empty (): r e t u r n Stack()
def isEmpty(s: Stack ): r e t u r n s.isEmpty ()
def push(a: A, s: Stack): s.push(a)
def pop(s: Stack): s.pop()
def top(s: Stack): r e t u r n s.top()

stack_tuple = namedtuple( ’ s t a c k ’ ,
[ ’A ’ , ’ S t a c k ’ , ’ empty ’ , ’ i s E m p t y ’ , ’ p u s h ’ , ’ pop ’ , ’ t o p ’ ])

r e t u r n stack_tuple(A, Stack , empty , isEmpty , push , pop ,
top)

Listing 7: User-provided (hand-coded) implementation of a while loop in C++. The repeat procedure

is always implemented in the host language, which makes the connection between the three functions

repeat, cond and body potentially difficult to identify in a Magnolia program.

t e m p l a t e < typename _Context , typename _State ,
c l a s s _body , c l a s s _cond >

s t r u c t while_ops {
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t y p e d e f _State State;
t y p e d e f _Context Context;

_body body;
_cond cond;

i n l i n e void repeat(State &state , c o n s t Context &context) {
whi le (while_ops ::cond(state , context )) {

while_ops ::body(state , context );
}

}
};
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Listing 8: A problem with constraining concepts.

c o n c e p t Graph = {
type Graph;
type Vertex;
type VertexCollection;

f u n c t i o n adjacentVertices(g: Graph , v: Vertex)
: VertexCollection;

f u n c t i o n vertices(g: Graph): VertexCollection;
// predicate member(v: Vertex , vc: VertexCollection );
// axiom adjacentVerticesAreVertices(
// v1: Vertex , v2: Vertex , g: Graph) {
// assert member(v2 , adjacentVertices(g, v1)) =>
// member(v2 , vertices(g))
// }

}
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Listing 9: The DNF rewriting rules in Magnolia.

c o n c e p t GenericBinopRules = {
type E;
type Array;
type Index;

f u n c t i o n binop(lhs: E, rhs: E): E;
f u n c t i o n binop(lhs: E, rhs: Array): Array;
f u n c t i o n binop(lhs: Array , rhs: Array): Array;
f u n c t i o n psi(ix: Index , array: Array): E;

// Rule 1
axiom binopArrayRule(ix: Index , lhs: Array , rhs: Array) {

a s s e r t psi(ix, binop(lhs , rhs)) ==
binop(psi(ix, lhs), psi(ix, rhs));

}

// Rule 2
axiom binopScalarRule(ix: Index , lhs: E, rhs: Array) {

a s s e r t psi(ix, binop(lhs , rhs)) ==
binop(lhs , psi(ix , rhs));

}
}

c o n c e p t DNFRules = {
use GenericBinopRules[ binop => _+_

, binopScalarRule => addScalarRule
, binopArrayRule => addArrayRule
];

use GenericBinopRules[ binop => _-_
, binopScalarRule => subScalarRule
, binopArrayRule => subArrayRule
];

use GenericBinopRules[ binop => _*_
, binopScalarRule => mulScalarRule
, binopArrayRule => mulArrayRule
];
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use GenericBinopRules[ binop => _/_
, binopScalarRule => divScalarRule
, binopArrayRule => divArrayRule
];

type Axis;
type Offset;

f u n c t i o n rotate(array: Array , axis: Axis , offset: Offset)
: Array;

f u n c t i o n rotateIx(ix: Index , axis: Axis , offset: Offset)
: Index;

// Rule 3
axiom rotateRule(ix: Index , array: Array , axis: Axis ,

offset: Offset) {
a s s e r t psi(ix, rotate(array , axis , offset )) ==

psi(rotateIx(ix, axis , offset), array );
}

}[ E => Float ];

Listing 10: Generated index-level implementation of substep in Magnolia.

f u n c t i o n substepIx(u: Array , v: Array , u0: Array ,
u1: Array , u2: Array , ix: Index)

: Array =
psi(ix,

u + dt()/( two(): Float) * (nu() *
((one(): Float)/dx()/dx() *

(rotate(v, zero(), -one(): Offset) +
rotate(v, zero(), one(): Offset) +
rotate(v, one (): Axis , -one (): Offset) +
rotate(v, one (): Axis , one (): Offset) +
rotate(v, two (): Axis , -one (): Offset) +
rotate(v, two (): Axis , one (): Offset )) -

three() * (two(): Float)/dx()/dx() * u0) -
(one(): Float )/(two(): Float)/dx() *

(( rotate(v, zero(), one(): Offset) -
rotate(v, zero(), -one (): Offset )) * u0 +

(rotate(v, one(): Axis , one(): Offset) -
rotate(v, one (): Axis , -one (): Offset )) * u1 +

(rotate(v, two(): Axis , one(): Offset) -
rotate(v, two (): Axis , -one (): Offset )) * u2)));
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Listing 11: A naive and non-specific C++ implementation of a scheduling function.

TOTAL_ARRAY_SIZE corresponds to the number of elements within one array. Every

array has the same number of elements.

Array schedule( c o n s t Array &u, c o n s t Array &v,
c o n s t Array &u0, c o n s t Array &u1,
c o n s t Array &u2) {

Array result;
f o r (size_t i = 0; i < TOTAL_ARRAY_SIZE; ++i) {

result[i] = substepIx(u, v, u0, u1 , u2 , i);
}
r e t u r n result;

}



174 Appendix: Paper 4

Listing 12: Introducing padding into PDEProgramDNF.

program PDEProgramPadded = {
use (rewrite PDEProgramDNF with OFPad 1);
// imports a new schedule , a new function for index
// rotation , and a procedure for refilling padding
use ExtExtendPadding;

}

c o n c e p t OFPad = {
type Array;
type Float;
procedure refillPadding(upd a: Array);
f u n c t i o n schedulePadded(u: Array , v: Array ,

u0: Array , u1: Array , u2: Array)
: Array;

f u n c t i o n schedule(u: Array , v: Array ,
u0: Array , u1: Array , u2: Array): Array;

axiom padRule(u: Array , v: Array ,
u0: Array , u1: Array , u2: Array) {

a s s e r t schedule(u, v, u0, u1, u2) ==
{ var result = schedulePadded(u, v, u0 , u1 , u2);

c a l l refillPadding(result );
v a l u e result;

};
}

type Index;
type Axis;
type Offset;
f u n c t i o n rotateIx(ix: Index , axis: Axis , offset: Offset)

: Index;
f u n c t i o n rotateIxPadded(ix: Index , axis: Axis ,

offset: Offset ): Index;

axiom rotateIxPadRule(ix: Index , axis: Axis ,
offset: Offset) {

a s s e r t rotateIx(ix, axis , offset) ==
rotateIxPadded(ix, axis , offset );

}
}
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Listing 13: A C++ implementation of a scheduling function for padded arrays. All the arrays have the

same (three dimensional) shape and each axis is padded by the same amount on each ends. S0, S1, and

S2 respectively represent the length of the first, second, and third axis of the arrays. PAD0, PAD1, and

PAD2 respectively represent the amount of padding for one end of the first, second, and third axis of

the arrays.

Array schedulePadded( c o n s t Array &u, c o n s t Array &v,
c o n s t Array &u0, c o n s t Array &u1,
c o n s t Array &u2) {

Array result;
size_t paddedS1 = S1 + 2 * PAD1;
size_t paddedS2 = S2 + 2 * PAD2;

f o r (size_t i = PAD0; i < S0 + PAD0; ++i) {
f o r (size_t j = PAD1; j < S1 + PAD1; ++j) {

f o r (size_t k = PAD2; k < S2 + PAD2; ++k) {
size_t ix =

i * paddedS1 * paddedS2 + j * paddedS2 + k;
result[ix] = substepIx(u, v, u0 , u1 , u2 , ix);

}
}

}
r e t u r n result;

}
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Listing 14: The implementation of step produced by an application of rewrite with OFPad.

procedure step(upd u0: Array , upd u1: Array ,
upd u2: Array) = {

var v0: Array = u0;
var v1: Array = u1;
var v2: Array = u2;
v0 = {

var result: Array =
schedulePadded(v0, u0, u0 , u1 , u2);

refillPadding(result );
v a l u e result;

};
v1 = {

var result: Array =
schedulePadded(v1, u1, u0 , u1 , u2);

refillPadding(result );
v a l u e result;

};
v2 = {

var result: Array =
schedulePadded(v2, u2, u0 , u1 , u2);

refillPadding(result );
v a l u e result;

};
u0 = {

var result: Array =
schedulePadded(u0, v0, u0 , u1 , u2);

refillPadding(result );
v a l u e result;

};
u1 = {

var result: Array =
schedulePadded(u1, v1, u0 , u1 , u2);

refillPadding(result );
v a l u e result;

};
u2 = {

var result: Array =
schedulePadded(u2, v2, u0 , u1 , u2);

refillPadding(result );
v a l u e result;

};
};
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Listing 15: A generator for a 3D implementation of substepIx.

c o n c e p t OFSpecializeSubstepGenerator = {
type Index;
type Array;
type Float;
type ScalarIndex;

f u n c t i o n mkIx(i: ScalarIndex , j: ScalarIndex ,
k: ScalarIndex ): Index;

f u n c t i o n substepIx(u: Array , v: Array ,
u0: Array , u1: Array , u2: Array , ix: Index): Float;

f u n c t i o n substepIx3D(u: Array , v: Array ,
u0: Array , u1: Array , u2: Array , i: ScalarIndex ,
j: ScalarIndex , k: ScalarIndex ): Float;

axiom specializeSubstepRule(u: Array , v: Array ,
u0: Array , u1: Array , u2: Array , i: ScalarIndex ,
j: ScalarIndex , k: ScalarIndex) {

a s s e r t substepIx3D(u, v, u0, u1, u2, i, j, k) ==
substepIx(u, v, u0, u1, u2, mkIx(i, j, k));

}
};



178 Appendix: Paper 4

Listing 16: Specializing calls to the indexing function ψ .

c o n c e p t OFSpecializePsi = {
type Index;
type Array;
type E;
type ScalarIndex;

/* 3D index projection functions */
f u n c t i o n ix0(ix: Index): ScalarIndex;
f u n c t i o n ix1(ix: Index): ScalarIndex;
f u n c t i o n ix2(ix: Index): ScalarIndex;

/* 3D index constructor */
f u n c t i o n mkIx(i: ScalarIndex , j: ScalarIndex ,

k: ScalarIndex ): Index;

f u n c t i o n psi(ix: Index , array: Array): E;
f u n c t i o n psi(i: ScalarIndex , j: ScalarIndex ,

k: ScalarIndex , array: Array ): E;

axiom specializePsiRule(ix: Index , array: Array) {
a s s e r t psi(ix, array) ==

psi(ix0(ix), ix1(ix), ix2(ix), array );
}

axiom reduceMakeIxRule(i: ScalarIndex , j: ScalarIndex ,
k: ScalarIndex) {

var ix = mkIx(i, j, k);
a s s e r t ix0(ix) == i;
a s s e r t ix1(ix) == j;
a s s e r t ix2(ix) == k;

}
}[ E => Float ];
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Listing 17: A rewriting system to specialize the index rotation operation.

c o n c e p t OFReduceMakeIxRotate = {
use s i g n a t u r e (OFSpecializePsi );

type Axis;
type Offset;

f u n c t i o n zero (): Axis;
f u n c t i o n one (): Axis;
f u n c t i o n two (): Axis;

f u n c t i o n rotateIx(ix: Index , axis: Axis , offset: Offset)
: Index;

type AxisLength;

f u n c t i o n shape0 (): AxisLength;
f u n c t i o n shape1 (): AxisLength;
f u n c t i o n shape2 (): AxisLength;

f u n c t i o n _+_(six: ScalarIndex , o: Offset ): ScalarIndex;
f u n c t i o n _%_(six: ScalarIndex , sc: AxisLength)

: ScalarIndex;

axiom reduceMakeIxRotateRule(i: ScalarIndex ,
j: ScalarIndex , k: ScalarIndex , array: Array ,
o: Offset) {

var ix = mkIx(i, j, k);
var s0 = shape0 ();
var s1 = shape1 ();
var s2 = shape2 ();

a s s e r t ix0(rotateIx(ix, zero(), o)) == (i + o) % s0;
a s s e r t ix0(rotateIx(ix, one(), o)) == i;
a s s e r t ix0(rotateIx(ix, two(), o)) == i;

a s s e r t ix1(rotateIx(ix, zero(), o)) == j;
a s s e r t ix1(rotateIx(ix, one(), o)) == (j + o) % s1;
a s s e r t ix1(rotateIx(ix, two(), o)) == j;

a s s e r t ix2(rotateIx(ix, zero(), o)) == k;
a s s e r t ix2(rotateIx(ix, one(), o)) == k;
a s s e r t ix2(rotateIx(ix, two(), o)) == (k + o) % s2;

}
}
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Listing 18: Elimination of the modulo operations in the program.

// We suppose here that the amount of padding is sufficient
// across each axis for every indexing operation.
c o n c e p t OFEliminateModuloPadding = {

use s i g n a t u r e (OFReduceMakeIxRotate );

type Array;
type Float;

f u n c t i o n psi(i: ScalarIndex , j: ScalarIndex ,
k: ScalarIndex , a: Array): Float;

axiom eliminateModuloPaddingRule(
i: ScalarIndex , j: ScalarIndex ,
k: ScalarIndex , a: Array , o: Offset) {

var s0 = shape0 ();
var s1 = shape1 ();
var s2 = shape2 ();

a s s e r t psi((i + o) % s0, j, k, a) ==
psi(i + o, j, k, a);

a s s e r t psi(i, (j + o) % s1, k, a) ==
psi(i, j + o, k, a);

a s s e r t psi(i, j, (k + o) % s2, a) ==
psi(i, j, k + o, a);

}
}
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