
Padding in the Mathematics of Arrays
Benjamin Chetioui
University of Bergen

Department of Informatics
Bergen, Hordaland, Norway
benjamin.chetioui@uib.no

Ole Abusdal
Western Norway University of

Applied Sciences
Department of Computer science,

Electrical engineering and
Mathematical sciences

Bergen, Hordaland, Norway
ojab@hvl.no

Magne Haveraaen
University of Bergen

Department of Informatics
Bergen, Hordaland, Norway

https://www.ii.uib.no/~magne/

Jaakko Järvi
University of Turku

Department of Computing
Turku, Finland

jaakko.jarvi@utu.fi

Lenore Mullin
College of Engineering and Applied

Sciences
University at Albany, SUNY

Albany, NY, USA
lmullin@albany.edu

Abstract
Multi-dimensional array manipulation constitutes a core
component of numerous numerical methods, e.g. finite differ-
ence solvers of Partial Differential Equations (PDEs). The ef-
ficiency of such computations is tightly connected to travers-
ing array data in a hardware-friendly way.

The Mathematics of Arrays (MoA) allows reasoning about
array computations at a high level and enables systematic
transformations of array-based programs. We have previ-
ously shown that stencil computations reduce to MoA’s De-
notational Normal Form (DNF).

Here we bring to light MoA’s Operational Normal Forms
(ONFs) that allow for adapting array computations to hard-
ware characteristics. ONF transformations start from the
DNF. Alongside the ONF transformations, we extend MoA
with rewriting rules for padding. These new rules allow both
a simplification of array indexing and a systematic approach
to introducing halos to PDE solvers. Experiments on various
architectures confirm the flexibility of the approach.

CCS Concepts: • Software and its engineering;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ARRAY ’21, June 21, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8466-7/21/06. . . $15.00
https://doi.org/10.1145/3460944.3464311

Keywords: Mathematics of Arrays, Finite Difference Meth-
ods, PDE Solvers, Ghost Cells, High-Performance Comput-
ing, Stencil Computations

ACM Reference Format:
Benjamin Chetioui, Ole Abusdal, Magne Haveraaen, Jaakko Järvi,
and Lenore Mullin. 2021. Padding in the Mathematics of Arrays.
In Proceedings of the 7th ACM SIGPLAN International Workshop on
Libraries, Languages and Compilers for Array Programming (ARRAY
’21), June 21, 2021, Virtual, Canada. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3460944.3464311

1 Introduction
In the past few decades, a large variety of high-performance
computing (HPC) architectures has appeared. On the path
towards exascale computing, we can expect to see a similar
medley of architectures. Software for HPC therefore needs
to be highly adaptable. This includes adjusting to, among
other things, different memory hierarchies and changing
intra- and interprocess communication hardware.

This paper explores the Mathematics of Arrays (MoA) for-
malism [10] as a tool for optimizing array codes for different
hardware architectures. We have previously established a
means of transforming stencil-based array code to Denota-
tional Normal Form (DNF) [4]—irreducible expressions in the
language of MoA. Given knowledge of the targeted parallel
distribution and memory layout, one can transform a DNF
expression to an architecture-specific normal form, the Oper-
ational Normal Form (ONF), which we describe in Section 4.
ONF transformations include the dimension lifting oper-

ation for reshaping an array by splitting a given axis of its
shape into two or more dimensions. This operation can con-
veniently divide an array over different computation loci
(whether they be threads, cores, or even systems).

The contribution of this paper is a formalization of con-
cepts of MoA’s ONF and the extension of MoA with new

15

https://doi.org/10.1145/3460944.3464311
https://doi.org/10.1145/3460944.3464311

ARRAY ’21, June 21, 2021, Virtual, Canada Benjamin Chetioui, Ole Abusdal, Magne Haveraaen, Jaakko Järvi, and Lenore Mullin

operations to deal with padding of data. With these opera-
tions, MoA provides a framework for transforming regular
array stencil code to distributed code with halo zones — also
referred to as ghost cells in the literature [8]. As an example,
the paper shows howMoA and its ONF help in the search for
more efficient stencil-based array computations in a Partial
Differential Equation (PDE) solver based on Finite Difference
Methods (FDMs).We obtain a 10% performance improvement
with changes easily expressible in MoA.

We have started to implement MoA with our extensions in
Coq, so that the formal claims we make, e.g., about the ONF
transformations can be machine-checked. This effort is at an
early stage; the proofs can be found in the repository at https:
//github.com/mathematics-of-arrays/moa-formalization.

The paper is organised as follows. Next is a motivation
section, then a discussion of related work. Section 4 covers
the required prerequisites in MoA and previous work on the
DNF layer. Section 5 discusses dimension lifting, and defines
and explains padding and data layout. We then briefly report
on some experiments and conclude in Section 7.

2 Motivation
To motivate our work, we ran the PDE solver we presented
in [4] on a set of experimental architectures and implemented
some of the ONF transformations on the code. Table 1 shows
a matrix where each column corresponds to a different ver-
sion of the solver and each row to different hardware. The
table makes it plain that different architectures benefit from
different transformations. While on CPU 1 the dimension
lifting on 0th axis and tiled memory approach performs best,
on CPU 3 it is clearly inefficient compared to the other di-
mension lifting-based scenarios.
The hard to predict variations in performance, and the

sheer number of different memory layouts, motivate a ve-
hicle for easy exploration of codes that implement different
memory layouts. If exploring different layouts is made easy,
programmers can obtain close-to-optimal performance for
different architectures with little effort.
In the following, we demonstrate that MoA, with our ex-

tension of operations for padding, provides the required level
of expressivity to accomplish just that.

3 Related
Ken Iverson introduced whole-array operations in the APL
programming language [7]. Building on further explorations
by Abrams [1], Mullin created the Mathematics of Arrays for-
malism [10] in order to address various shortcomings of the
universal algebra underlying APL (most notably the lack of
a calculus for indexing). MoA is intended to serve as a foun-
dation for exploring and optimizing array/tensor operations.
Mullin further explored MoA through case studies of scien-
tific algorithms, including QR Decomposition [12] and Fast

Table 1. Execution time (in seconds) of a PDE solver C imple-
mentation compiled with GCC 8.2.0 depending on hardware
and dimension lifting (DL) parameters. The arrays involved
in the computation are cubic, and each axis has length 512.
The gray background marks the fastest version(s) of the
solver for each row. The labels are as follows: S: Single core
(no DL); MDL: Multicore (DL on 0th dimension); MDLSL:
Multicore (DL on (𝑛 − 2)th dimension); MDLTM: Multicore
(DL on 0th dimension using tiled memory); CPU 1: Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10GHz; CPU 2: AMD EPYC
7601 32-Core; CPU 3: Intel(R) Xeon(R) Silver 4112 CPU @
2.60GHz; and CPU 4: ThunderX2 CN9980. The code of the
experiments is at https://github.com/mathematics-of-
arrays/padding-in-the-mathematics-of-arrays.

S MDL MDLSL MDLTM
CPU 1 225.74 70.96 66.66 61.81
CPU 2 299.42 59.16 68.14 68.70
CPU 3 172.71 85.97 85.59 117.11
CPU 4 660.53 85.06 72.80 77.86

Fourier Transforms (FFTs) [6]. The latter paper introduced
the dimension lifting operation, crucial to this work.
Burrows et al. identified an array API for FDM solvers

of PDEs [3]. We explored the MoA fragment corresponding
to this API and concluded that stencil computations can
systematically be reduced to MoA’s DNF [4]. Hagedorn et
al. [5] also looked into optimizing stencil computations, and
augmented LIFT [13] with the same operations.

Artjom Šinkarovs studied automatic data layout transfor-
mations using a type-based approach and demonstrated that
carefully chosen data layouts can greatly improve program
vectorisation, therefore leading to significant performance
improvements [15]. Šinkarovs et al. also implemented a Con-
volutional Neural Network in APL [14]—a setting in which
stencil-related padding operations are relevant. Šinkarovs’s
formalization in Agda of multiarrays à la APL in Agda (see
https://github.com/ashinkarov/agda-array) uses the latter
as an example.

4 MoA Background and Notation
We give a short introduction to the MoA algebra for repre-
senting and describing operations on arrays. For more details,
we refer the reader to the relevant works in our bibliogra-
phy [2, 10, 11].

MoA defines the𝜓 -calculus, a set of rules for manipulating
array shapes and expressions. By systematically applying a
set of terminating rewriting rules, we can transform an array
expression to a single array with standard layout and opera-
tions on the array elements, the Denotational Normal Form
(DNF). DNF can further be transformed into a corresponding

16

https://github.com/mathematics-of-arrays/moa-formalization
https://github.com/mathematics-of-arrays/moa-formalization
https://github.com/mathematics-of-arrays/padding-in-the-mathematics-of-arrays
https://github.com/mathematics-of-arrays/padding-in-the-mathematics-of-arrays
https://github.com/ashinkarov/agda-array

Padding in the Mathematics of Arrays ARRAY ’21, June 21, 2021, Virtual, Canada

Operational Normal Form (ONF), which represents array
access patterns in terms of start, stride and length. Together
with dimension lifting, this lets us reorganize the memory
layout and data access patterns, and to thus take into account
distribution of data and memory hierarchies, data locality,
etc., a flexiblity needed for current and future hardware ar-
chitectures.

The dimension of an array𝐴 corresponds to the number of
axes in𝐴 and is denoted by dim(𝐴). We define the shape of an
𝑛-dimensional array𝐴 as a vector ⟨𝑠0 , . . . , 𝑠𝑛−1⟩ containing
at index 𝑖 the length of 𝑖th axis in 𝐴. The size of an array is
the number of elements it contains, i.e. size(𝐴) = ∏𝑛−1

𝑖=0 𝑠𝑖 ;
we write this product of shape 𝑠 also as Π𝑠 .

We adopt the notation Fin𝑛 for the finite set of natu-
ral numbers {0, . . . , 𝑛 − 1}. An index into 𝐴 is a vector
⟨𝑖0 , . . . , 𝑖𝑘⟩ of length 𝑘 + 1 with 𝑘 ∈ Fin (dim(𝐴)) such
that 𝑖 𝑗 ∈ Fin 𝑠 𝑗 for all 𝑗 ∈ Fin𝑘 . If dim(𝐴) = 𝑘 + 1, we say
the index is a total index. The indexing function that defines
the content of the array at a given index differs depending
on the abstraction layer we consider.
For example, a 2-dimensional array 𝑀 with shape ⟨2, 3⟩

contains 6 elements and corresponds to a 2-by-3 matrix. We
represent such an array using the row-major notation

𝑀 =

(
𝑒0,0 𝑒0,1 𝑒0,2
𝑒1,0 𝑒1,1 𝑒1,2

)
,

where 𝑒𝑖, 𝑗 is the element of𝑀 at total index ⟨𝑖 𝑗⟩.
Scalars are represented as 0-dimensional arrays, i.e. arrays

with shape ⟨⟩ and size 1. Empty arrays have size 0, i.e. at
least one of their shape components is 0.

4.1 Relevant MoA Operations at the DNF level
In the following, 𝐴 is an 𝑛-dimensional array with shape
⟨𝑠0 , . . . , 𝑠𝑛−1⟩. The rest of the paper makes use of the fol-
lowing core operations at the DNF level:

• the shape function 𝜌 , that returns the shape of an array,
e.g. 𝜌 (𝑀) = ⟨2, 3⟩, where 𝑀 is the 2-by-3 array from
the example above;

• the indexing function 𝜓 , that takes an index into 𝐴
and returns the subarray at the indexed position. Thus,
⟨⟩ 𝜓 𝐴 = 𝐴 holds. For our example, we have

⟨1⟩ 𝜓 𝑀 =
(
𝑒1,0 𝑒1,1 𝑒1,2

)
and 𝜌 (⟨1⟩ 𝜓 𝑀) = ⟨3⟩;
When𝐴 is 1-dimensional and therefore has shape ⟨𝑠0⟩,
we also use the notation

𝐴[𝑢],
where the index 𝑢 is either
– a scalar 𝑢 ∈ Fin 𝑠0, and 𝐴[𝑢] is the element at index
𝑢 in 𝐴; or

– a vector of 𝑘 indices ⟨𝑢0 , . . . , 𝑢𝑘−1⟩ such that ∀𝑗 ∈
Fin𝑘,𝑢 𝑗 ∈ Fin 𝑠0, and 𝐴[𝑢] is the vector whose 𝑗 th
element is the 𝑢 𝑗 th element in 𝐴;

• the reshaping function reshape, that takes a shape 𝑠
with Π𝑠 = Π𝜌 (𝐴), and produces an array with the
same size and elements as 𝐴 but with shape 𝑠 , i.e.
𝜌 (reshape(𝑠, 𝐴)) = 𝑠 . Note that reshape does notmove
data around in 𝐴;

• a slicing function △ (read "take"), that takes a posi-
tive (respectively negative) integer 𝑡 such that |𝑡 | ∈
Fin (𝑠0 + 1) and returns a slice containing the first
(respectively last) |𝑡 | subarrays of 𝐴. Thus,

𝜌 (△(𝑡, 𝐴)) = ⟨|𝑡 | , 𝑠1 , . . . , 𝑠𝑛−1⟩

and ∀𝑖 ∈ Fin |𝑡 |,

⟨𝑖⟩ 𝜓 △(𝑡, 𝐴) =
{
⟨𝑖⟩ 𝜓 𝐴 if 𝑡 ≥ 0
⟨𝑠0 − |𝑡 | + 𝑖⟩ 𝜓 𝐴 otherwise;

• a slicing function ▽ (read "drop"), that takes a posi-
tive (respectively negative) integer 𝑡 such that |𝑡 | ∈
Fin (𝑠0 + 1) and returns a slice containing the last (re-
spectively first) 𝑠0 − |𝑡 | subarrays of 𝐴. Thus,

𝜌 (▽(𝑡, 𝐴)) = ⟨𝑠0 − |𝑡 | , 𝑠1 , . . . , 𝑠𝑛−1⟩

and ∀𝑖 ∈ Fin (𝑠0 − |𝑡 |),

⟨𝑖⟩ 𝜓 ▽(𝑡, 𝐴) =
{
⟨𝑖 + 𝑡⟩ 𝜓 𝐴 if 𝑡 ≥ 0
⟨𝑖⟩ 𝜓 𝐴 otherwise.

• the concatenation function cat, that takes an additional
array 𝐵 with shape

〈
𝑠𝐵0 , 𝑠1 , . . . , 𝑠𝑛−1

〉
such that

𝜌 (cat(𝐴, 𝐵)) =
〈
𝑠0 + 𝑠𝐵0 , 𝑠1 , . . . , 𝑠𝑛−1

〉
and

⟨𝑖⟩ 𝜓 cat(𝐴, 𝐵) =
{
⟨𝑖⟩ 𝜓 𝐴 if 𝑖 < 𝑠0
⟨𝑖 − 𝑠0⟩ 𝜓 𝐵 otherwise

hold. In order to simplify notation along the paper,
we relax the definition of cat to assume its second
argument is automatically reshaped to fit the shape
requirements. We use this only in cases when the re-
quired reshape operation does not require computing
a non-trivial shape argument.
∀𝑡 ∈ Fin 𝑠0, cat(△(𝑡, 𝐴), ▽(𝑡, 𝐴)) = 𝐴 holds;

• the family of rotation functions \ 𝑗 that take a positive
(respectively negative) integer 𝑜 and rotate 𝐴 by |𝑜 |
elements to the "right" (respectively left) along axis 𝑗 .
Formally, we have
∀𝑗 ∈ Fin (dim(𝐴)), 𝑜 ∈ {𝑜 ∈ Z : |𝑜 | ∈ Fin 𝑠 𝑗 },

𝜌 (𝑜 \ 𝑗 𝐴) = 𝜌 (𝐴)

and

𝑖 𝜓 (𝑜 \ 𝑗 𝐴) =
{
cat(△(−𝑜, 𝑖 𝜓 𝐴), ▽(−𝑜, 𝑖 𝜓 𝐴)) if 0 ≤ 𝑜
cat(▽(𝑜, 𝑖 𝜓 𝐴), △(𝑜, 𝑖 𝜓 𝐴)) otherwise;

where 𝑖 is a partial index of length 𝑗 into 𝐴.

17

ARRAY ’21, June 21, 2021, Virtual, Canada Benjamin Chetioui, Ole Abusdal, Magne Haveraaen, Jaakko Järvi, and Lenore Mullin

4.2 Relevant MoA Operations at the ONF level
The following core operations are used throughout the paper
at the ONF level:

• the family of dimension lifting operations lift𝑗 that
take two natural numbers 𝑑, 𝑞 with (𝑑, 𝑞) ∈ {(𝑑, 𝑞) :
𝑑 · 𝑞 = 𝑠 𝑗 } and split the 𝑗 th axis of 𝐴 into two shape
components. More specifically,

lift𝑗 (𝑑, 𝑞,𝐴)
= reshape

(〈
𝑠0 , . . . , 𝑠 𝑗−1 , 𝑑 , 𝑞 , . . . , 𝑠𝑛−1

〉
, 𝐴

)
holds. Dimension lifting is syntactic sugar for a specific
reshaping operation. The intent is to use dimension
lifting when the goal is to distribute computations
below axis 𝑗 across 𝑑 computation loci. To the best
of the knowledge of the authors, it is the first time a
formal definition for dimension lifting in MoA is stated
in the literature. We later give a formal definition for
dimension lifting compatible with padding operations
in Definition 10;

• the flattening function rav, which flattens an array into
a unidimensional array, i.e.

rav(𝐴) = reshape(⟨Π(𝜌 (𝐴))⟩ , 𝐴).

We use rav to transport𝐴 into its corresponding linear
representation in memory;

• the mapping function 𝛾 that takes a shape 𝑠 with Π𝑠 =
Π(𝜌 (𝐴)) and a total index into 𝑠 and produces the
corresponding index into rav(𝐴). Since rav(𝐴) is 1-
dimensional, the equation

𝑖 𝜓 𝐴 = (rav(𝐴)) [𝛾 (𝜌 (𝐴), 𝑖)]

holds for any total index 𝑖 into 𝐴. Intuitively, 𝛾 trans-
forms indexing operations into an abstract array rep-
resentation of 𝐴 into one that takes into account its
concrete memory layout;

• the range function] that given a positive integer 𝑛
returns a 1-dimensional array containing the elements
of Fin𝑛 in ascending order.

We recall informally the 𝜓 -correspondence theorem [11]:
∀𝑘 ∈ Fin (dim(𝐴)) and an index 𝑖 of length 𝑘 into 𝐴,

𝑖 𝜓 𝐴 = (rav(𝐴)) [𝛾 (𝑖, ⟨𝑠0 , . . . , 𝑠𝑘−1⟩) · stride +] stride]

holds, with stride = Π(⟨𝑠𝑘 , . . . , 𝑠𝑛−1⟩), and + is the elemen-
twise addition operation with implicit broadcast semantics.

Formal definitions for the operations described above can
be found in Mullin’s original work [10].

5 Memory Layout in the MoA
In the rest of the paper, we use a row-major memory layout.
Our running example will be the DNF expression

expr = ((1 \0 Arr) + (−1 \0 Arr))

where + is the elementwise addition operator. For the rest of
the paper, we set

Arr =

©«

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

ª®®®®®®®¬
,

where 𝜌 (Arr) = ⟨6, 4⟩. More illustratively,

expr =

©«

21 22 23 24
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20

ª®®®®®®®¬
+

©«

5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
1 2 3 4

ª®®®®®®®¬
=

©«

26 28 30 32
10 12 14 16
18 20 22 24
26 28 30 32
34 36 38 40
18 20 22 24

ª®®®®®®®¬
.

The array expression expr is representative of one step of a
PDE solver, as considered in the authors’ previous work [4]
and by Burrows et al. [3].
We can use the𝜓 -correspondence theorem to transform

expr into the following ONF expression:

∀𝑖 ∈ Fin 6, ⟨𝑖⟩ 𝜓 ((1 \0 Arr) + (−1 \0 Arr))
= (rav Arr) [𝛾 (⟨(𝑖 + 1) mod 6⟩ , ⟨6⟩) · 4 +]4] +
(rav Arr) [𝛾 (⟨(𝑖 − 1) mod 6⟩ , ⟨6⟩) · 4 +]4] .

We follow up by unfolding 𝛾 :

= (rav Arr) [((𝑖 + 1) mod 6) · 4 +]4] +
(rav Arr) [((𝑖 − 1) mod 6) · 4 +]4] .

By unfolding rav and turning] into a loop we get the follow-
ing generic program:

∀𝑖 ∈ Fin 6, 𝑗 ∈ Fin 4,
(rav Arr) [((𝑖 + 1) mod 6) · 4 + 𝑗] +
(rav Arr) [((𝑖 − 1) mod 6) · 4 + 𝑗] .

The above program is written assuming, implicitly, that the
target architecture is a single-core processor. We can use
dimension lifting to establish a correspondence between
the shape of the array and a different underlying hardware
architecture.
Consider an architecture that consists of two single-core

processors. We apply dimension lifting on axis 1 of Arr, to
create the array

Arr′ = lift1 (2, 2, 𝐴) = reshape (⟨6, 2, 2⟩ , 𝐴)

18

Padding in the Mathematics of Arrays ARRAY ’21, June 21, 2021, Virtual, Canada

where axis 1 corresponds to the number of available cores.
We get the following:

∀𝑖 ∈ Fin 6, 𝑗 ∈ Fin 2,
⟨𝑖, 𝑗⟩ 𝜓 ((1 \0 Arr′) + (−1 \0 Arr′))

= (rav Arr′) [𝛾 (⟨((𝑖 + 1) mod 6) 𝑗⟩ , ⟨6, 2⟩) · 2 +]2] +
(rav Arr′) [𝛾 (⟨((𝑖 − 1) mod 6) 𝑗⟩ , ⟨6, 2⟩) · 2 +]2]

= (rav Arr′) [(((𝑖 + 1) mod 6) · 2 + 𝑗) · 2 +]2] +
(rav Arr′) [(((𝑖 − 1) mod 6) · 2 + 𝑗) · 2 +]2] .

This reduces to the following generic program:

∀𝑖 ∈ Fin 6, 𝑗 ∈ Fin 2, 𝑘 ∈ Fin 2,
(rav Arr′) [((𝑖 + 1) mod 6) · 4 · 2 + 𝑗 · 2 + 𝑘] +
(rav Arr′) [((𝑖 − 1) mod 6) · 4 · 2 + 𝑗 · 2 + 𝑘] .

The programs before and after dimension lifting above are
equivalent except for their different looping structures—they
are adapted to two different hardware architectures.
Dimension lifting can be carried out across any axis (or

on several axes simultaneously). The choice of axes should
be guided by both the memory hierarchy and the operations
involved in the expression. For example, the rotations above
are applied on axis 0; dimension lifting on this axis would
not allow perfectly splitting the memory between the two
processors.
The example involves a modulo operation on the index.

This is an expensive operation even on modern hardware
[9]. We describe below a circular padding operation on DNF
expressions that introduces data redundancy into arrays.

In Section 5.1, we define circular padding operations and
observe how they eliminate the need for modulo operations
in a single-core setting for our running example. In Sec-
tion 5.2 we generalize these operations and put them to
work to reduce the need for inter-process communication in
a distributed computation setting for our running example.

5.1 Case of One Core and Constant Memory Access
Cost

Padding an array is prepending or appending data to it. For
our purposes, we want these data to be specific slices of
the array itself. Here we introduce notation to define the
circular prepending (referred to as left padding) and circular
appending (referred to as right padding) operations in MoA.

Notation 1. Given an 𝑛-dimensional array𝐴 and an integer
𝑖 ∈ Fin𝑛, we use the shorthand notation 𝐾𝑖 to represent the
index of length 𝑖 into 𝐴 whose 𝑗 th component is bound to
variable 𝑘 𝑗 , i.e.

𝐾𝑖 = ⟨𝑘0 , . . . , 𝑘𝑖−1⟩ .
To further simplify the notation of indexing, we also intro-
duce the shorthand notation

𝐴𝐾𝑖 = 𝐴 ⟨𝑘0 , ... , 𝑘𝑖−1 ⟩ = ⟨𝑘0 , . . . , 𝑘𝑖−1⟩ 𝜓 𝐴.

Definition 2. Let 𝐴 be an 𝑛-dimensional array with shape
⟨𝑠0 , . . . , 𝑠𝑛−1⟩. We can specify an 𝑛-dimensional slice 𝐵 of
𝐴 by annotating each component 𝑠𝑖 of its shape with the
(inclusive) beginning of the slice 𝑏𝑖 ∈ Fin (𝑠𝑖 + 1) and the
(exclusive) end 𝑒𝑖 ∈ Fin (𝑠𝑖 + 1), with 𝑏𝑖 ≤ 𝑒𝑖 . Concretely, we
have

𝜌 (𝐵) = ⟨𝑒0 − 𝑏0 , . . . , 𝑒𝑛−1 − 𝑏𝑛−1⟩
and

𝐵 ⟨𝑘0 , ... , 𝑘𝑛−1 ⟩ = 𝐴 ⟨𝑘0+𝑏0 , ... , 𝑘𝑛−1+𝑏𝑛−1 ⟩ .

In the rest of this section, we attach a slice annotation to
each of our arrays. We write

𝜌ann (𝐴) =
〈
𝑠
𝑏0,𝑒0
0 , . . . , 𝑠

𝑏𝑛−1,𝑒𝑛−1
𝑛−1

〉
the projection function that extracts both the shape and the
slice annotation from an array.
We care about making a difference between padded and

unpadded arrays. In the following, it is assumed that if 𝐴
is unpadded, it carries the slice annotation such that ∀𝑖 ∈
Fin (dim(𝐴)), 𝑏𝑖 = 0, 𝑒𝑖 = 𝑠𝑖 .

Definition 3. Given an array 𝐴 such that

𝜌ann (𝐴) =
〈
𝑠
𝑏0,𝑒0
0 , . . . , 𝑠

𝑏𝑛−1,𝑒𝑛−1
𝑛−1

〉
and an integer 𝑖 ∈ Fin𝑛 we define the right circular padding
operation on axis 𝑖 as padr𝑖 such that

padr𝑖 (𝐴)𝐾𝑖 = cat(𝐴𝐾𝑖 , 𝐴 ⟨𝑘0 , ... , 𝑘𝑖−1 , 𝑏𝑖+𝑠𝑖−𝑒𝑖 ⟩)
for 𝑗, 𝑘 𝑗 integers such that 0 ≤ 𝑗 < 𝑖 , 0 ≤ 𝑘 𝑗 < 𝑠 𝑗 . Notice that
this uses our overloaded definition of cat, where the second
parameter is implicitly reshaped as needed. The shape of the
result is given by

𝜌ann (padr𝑖 (𝐴)) =
〈
𝑠
𝑏0,𝑒0
0 , . . . , (𝑠𝑖 + 1)𝑏𝑖 ,𝑒𝑖 , . . . , 𝑠𝑏𝑛−1,𝑒𝑛−1

𝑛−1

〉
.

As an example, assume 𝜌ann (𝐴) =
〈
20,2, 20,2

〉
,

𝐴 =

(
1 2
3 4

)
then

padr0 (𝐴)𝐾0 = padr0 (𝐴) ⟨⟩ = cat(𝐴 ⟨⟩, 𝐴0+2−2) =
©«
1 2
3 4
1 2

ª®¬ .
In the sameway, we define the left circular padding operation
on axis 𝑖 as padl𝑖 such that

padl𝑖 (𝐴)𝐾𝑖 = cat(𝐴 ⟨𝑘0 , ... , 𝑘𝑖−1 , 𝑒𝑖−𝑏𝑖−1⟩, 𝐴𝐾𝑖),
whose shape is given by

𝜌ann (padl𝑖 (𝐴))

=

〈
𝑠
𝑏0,𝑒0
0 , . . . , (𝑠𝑖 + 1)𝑏𝑖+1,𝑒𝑖+1, . . . , 𝑠𝑏𝑛−1,𝑒𝑛−1

𝑛−1

〉
.

Finally, we write padl−1 (respectively padr−1) for the left
inverse function of padl (respectively padr).

19

ARRAY ’21, June 21, 2021, Virtual, Canada Benjamin Chetioui, Ole Abusdal, Magne Haveraaen, Jaakko Järvi, and Lenore Mullin

Recall our running example
expr = ((1 \0 Arr) + (−1 \0 Arr)),

which we reduced to
∀𝑖 ∈ Fin 6, 𝑗 ∈ Fin 4,

(rav Arr) [((𝑖 + 1) mod 6) · 4 + 𝑗] +
(rav Arr) [((𝑖 − 1) mod 6) · 4 + 𝑗] .

using the 𝜓 -correspondence theorem while assuming a
single-core processor as the underlying hardware architec-
ture.
We apply Definition 3 to obtain the following:

expr = padr−10 (padl−10 (padl0 (padr0 (expr))))
= padr−10 (padl−10 (padl0 (padr0 ((1 \0 Arr) +

(−1 \0 Arr))))) .
Proposition 4. For any axis 𝑖 , padl𝑖 and padr𝑖 commute, i.e.

padl𝑖 ◦ padr𝑖 = padr𝑖 ◦ padl𝑖 .
Proposition 4 follows from the associativity of cat.

Proposition 5. Let 𝐴 be an array without right padding, i.e.
an array such that

𝜌ann (𝐴) =
〈
𝑠
𝑏0,𝑠0
0 , . . . , 𝑠

𝑏𝑛−1,𝑠𝑛−1
𝑛−1

〉
.

For all 𝑖 ∈ Fin𝑛 and𝑚 ∈ Fin (𝑠𝑖 + 1),
padr𝑚𝑖 (𝐴)𝐾𝑖 = cat(𝐴𝐾𝑖 , △(𝑚, ▽(𝑏𝑖 , 𝐴𝐾𝑖))).

In the same way, for 𝐴 an array without left padding, we
have

padl𝑚𝑖 (𝐴)𝐾𝑖 = cat(▽(𝑒𝑖 − 𝑏𝑖 −𝑚, △(𝑒𝑖 − 𝑏𝑖 , 𝐴𝐾𝑖)), 𝐴𝐾𝑖).
Both cases of can be shown by induction on𝑚.

Proposition 6. Let 𝐵,𝐶 be 𝑛-dimensional MoA expressions
with 𝜌 (𝐵) = 𝜌 (𝐶) and ⊕ a binary map operation. Then
∀𝑖 ∈ Fin𝑛, padr𝑖 is distributive over ⊕, i.e.

padr𝑖 (𝐵) ⊕ padr𝑖 (𝐶) = padr𝑖 (𝐵 ⊕ 𝐶)
holds. Similarly, for padl𝑖

padl𝑖 (𝐵) ⊕ padl𝑖 (𝐶) = padl𝑖 (𝐵 ⊕ 𝐶)
holds. This idea is easily extensible to n-ary map operations.

Proof. To improve readability, we write
𝑇𝑖 = ⟨𝑘0 , . . . , 𝑘𝑖−1 , 𝑏𝑖 + 𝑠𝑖 − 𝑒𝑖⟩ .

In the case of padr𝑖 , since ⊕ is a binary map operation, we
have:

(padr𝑖 (𝐵) ⊕ padr𝑖 (𝐶))𝐾𝑖 = cat(𝐵
𝐾𝑖
, 𝐵𝑇𝑖) ⊕ cat(𝐶

𝐾𝑖
,𝐶𝑇𝑖)

⇔ (padr𝑖 (𝐵) ⊕ padr𝑖 (𝐶))𝐾𝑖 = cat(𝐵
𝐾𝑖

⊕ 𝐶
𝐾𝑖
, 𝐵𝑇𝑖 ⊕ 𝐶𝑇𝑖)

⇔ (padr𝑖 (𝐵) ⊕ padr𝑖 (𝐶))𝐾𝑖 = padr𝑖 (𝐵 ⊕ 𝐶)
𝐾𝑖

⇔ padr𝑖 (𝐵) ⊕ padr𝑖 (𝐶) = padr𝑖 (𝐵 ⊕ 𝐶).
The case for padl𝑖 can be shown using the same reasoning.

□

By applying Proposition 6 in our example, we get:
expr = padr−10 (padl−10 (padl0 (padr0 (1 \0 Arr)) +

padl0 (padr0 (−1 \0 Arr)))).

Proposition 7. Let 𝐵 be a 𝑛-dimensional unpadded MoA
expression, 𝑗 an axis of 𝐵 and 𝑟 an integer. Then, on any axis
𝑖 of 𝐵, we have that

𝑟 \ 𝑗 𝐵 = padr−𝑚2
𝑖

(padl−𝑚1
𝑖

(𝑟 \ 𝑗 padl𝑚1
𝑖

(padr𝑚2
𝑖

(𝐵))))
holds if either one of the following cases holds:
(i) 𝑗 ≠ 𝑖;
(ii) 𝑟 = 0;
(iii) 𝑟 < 0 and𝑚2 ≥ |𝑟 |;
(iv) 𝑟 > 0 and𝑚1 ≥ 𝑟 .

Proof. Cases (i) and (ii) are trivial. In case (i), padding does
not affect the rotation. In case (ii), 0 \ 𝑗 𝐵 = 𝐵 holds. We thus
want to prove that

𝑖 = 𝑗, 𝑟 < 0,𝑚2 ≥ |𝑟 |
implies

𝑟 \ 𝑗 𝐵 = padr−𝑚2
𝑖

(padl−𝑚1
𝑖

(𝑟 \ 𝑗 padl𝑚1
𝑖

(padr𝑚2
𝑖

(𝐵))))
Using Proposition 5, we can write padl𝑚1

𝑖
(padr𝑚2

𝑖
(𝐵)) as an

array 𝐴 such that
𝐴𝐾𝑖 = cat(p, cat(𝐵𝐾𝑖 , △(𝑚2, ▽(𝑏𝑖 , 𝐵𝐾𝑖))))

where p represents the left-padding of the array. Since 𝐵 is
originally unpadded, we rewrite 𝐴 as:

𝐴𝐾𝑖 = cat(p, cat(𝐵𝐾𝑖 , △(𝑚2, ▽(0, 𝐵𝐾𝑖))))
= cat(p, cat(𝐵𝐾𝑖 , △(𝑚2, 𝐵𝐾𝑖))).

Since 𝑟 < 0, we have:
(𝑟 \𝑖 𝐴)𝐾𝑖 = cat(▽(|𝑟 |, cat(p, cat(𝐵𝐾𝑖 , △(𝑚2, 𝐵𝐾𝑖)))),

△(|𝑟 |, cat(p, cat(𝐵𝐾𝑖 , △(𝑚2, 𝐵𝐾𝑖)))))
= cat(▽(|𝑟 |, cat(cat(p, 𝐵𝐾𝑖), △(𝑚2, 𝐵𝐾𝑖))),

△(|𝑟 |, cat(p, cat(𝐵𝐾𝑖 , △(𝑚2, 𝐵𝐾𝑖))))).
Using Proposition 4, we get
padr−𝑚2

𝑖
(padl−𝑚1

𝑖
(𝑟 \𝑖 𝐴)) = padl−𝑚1

𝑖
(padr−𝑚2

𝑖
(𝑟 \𝑖 𝐴)),

and since𝑚2 ≥ |𝑟 |, we have
padr−𝑚2

𝑖
(𝑟 \𝑖 𝐴))𝐾𝑖

=▽(|𝑟 |, cat(cat(p, 𝐵𝐾𝑖), △(𝑚2 − (𝑚2 − |𝑟 |), 𝐵𝐾𝑖)))
=▽(|𝑟 |, cat(cat(p, 𝐵𝐾𝑖), △(|𝑟 |, 𝐵𝐾𝑖))) .

We can thus write:
padl−𝑚1

𝑖
(padr−𝑚2

𝑖
(𝑟 \𝑖 𝐴)))𝐾𝑖

=▽(𝑚1, ▽(|𝑟 |, cat(cat(p, 𝐵𝐾𝑖), △(|𝑟 |, 𝐵𝐾𝑖))))
=▽(𝑚1 + |𝑟 |, cat(cat(p, 𝐵𝐾𝑖), △(|𝑟 |, 𝐵𝐾𝑖))) .

Since 𝑟 is a valid rotation offset in 𝐵, we can write
▽(𝑚1 + |𝑟 |, cat(cat(p, 𝐵𝐾𝑖), △(|𝑟 |, 𝐵𝐾𝑖)))

= cat(▽(𝑚1 + |𝑟 |, cat(p, 𝐵𝐾𝑖)), △(|𝑟 |, 𝐵𝐾𝑖))

20

Padding in the Mathematics of Arrays ARRAY ’21, June 21, 2021, Virtual, Canada

= cat(▽(|𝑟 |, 𝐵𝐾𝑖), △(|𝑟 |, 𝐵𝐾𝑖))
= (𝑟 \𝑖 𝐵)𝐾𝑖

and thus

𝑟 \ 𝑗 𝐵 = padr−𝑚2
𝑖

(padl−𝑚1
𝑖

(𝑟 \ 𝑗 padl𝑚1
𝑖

(padr𝑚2
𝑖

(𝐵))))
by function extensionality.
The proof for case 4 follows the same pattern as case 3 on
the opposite side of the array. □

Proposition 8. Given an array expression 𝐴 with

𝜌 (𝐴) = ⟨𝑠0 , . . . , 𝑠𝑛−1⟩ ,
some 𝑖 ∈ Fin𝑛, and two positive integers𝑚1,𝑚2,

padl𝑚1
𝑖

(padr𝑚2
𝑖

(𝐴)) ⟨𝑘0 , ... , 𝑚1+𝑘𝑖 , ... , 𝑘𝑛−1 ⟩ = 𝐴 ⟨𝑘0 , ... , 𝑘𝑛−1 ⟩

with ∀𝑗, 𝑘 𝑗 ∈ Fin 𝑠 𝑗 holds.

Proposition 8 can be proven by definition of padding.
The insight behind Proposition 8 is that the content of

𝐴 is maintained in the padded expression 𝐵, but that the
evaluation of 𝐴 within 𝐵 may behave differently due to the
shift in indexing and duplication of data brought by padding.

We call the values𝑚1 and𝑚2 in Proposition 8 consumption
speed for a given axis 𝑖 in the following, and define a function
speed𝑖 on expressions such that

speed𝑖 (𝐵) = (𝑚1,𝑚2).
Note that in practice, the choice of𝑚1 and𝑚2 is made by the
user of MoA based on their goals.

We apply Proposition 7, and get:

expr = padr−10 (padl−10 ((1 \0 padl0 (padr0 (Arr))) +
(−1 \0 padl0 (padr0 (Arr)))))

In order to get rid of the mod operation in the ONF expres-
sion we built for expr, we create a new array Arr′ defined
by

Arr′ = padl0 (padr0 (Arr))
From Definition 3, we have that

𝜌ann (Arr′) =
〈
81,7, 4

〉
and

Arr′ =

©«

21 22 23 24
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
1 2 3 4

ª®®®®®®®®®®®¬
.

We rewrite our example with the new definition of Arr′, and
get

expr = padr−10 (padl−10 ((1 \0 Arr′) + (−1 \0 Arr′))).

We can now transform it to ONF again. The bounds of the
relevant indices 𝑖 and 𝑗 are given by Proposition 8. We obtain
the following:

∀𝑖 ∈ {𝑖 ∈ Fin 8 : 1 ≤ 𝑖 < 7},
⟨𝑖, 𝑗⟩ 𝜓 ((1 \0 Arr′) + (−1 \0 Arr′))

≡ (rav Arr′) [𝛾 (⟨𝑖 + 1⟩ ; ⟨8⟩) × 4 +]4] +
(rav Arr′) [𝛾 (⟨𝑖 − 1⟩ ; ⟨8⟩) × 4 +]4] .

We then apply 𝛾 , rav, and turn] into a loop to get the follow-
ing generic program:

∀𝑖 ∈ {𝑖 ∈ Fin 8 : 1 ≤ 𝑖 < 7}, 𝑗 ∈ Fin 4,
(rav Arr′) [(𝑖 + 1) × 4 + 𝑗] +𝐴′[(𝑖 − 1) × 4 + 𝑗] .

Finally, we apply the composition padr−10 ◦ padl−10 and re-
trieve the exact same result as we would have gotten by
directly evaluating expr. Notice that thanks to the notion of
consumption speed, we avoided performing the computation
on irrelevant indices. In the end, both of the expressions had
6 loop iterations, but we managed to get rid of the expensive
mod operation by adding data redundancy into Arr.

5.2 Case of Non-Uniform Memory Access
Consider now that expr is embedded within a loop and must
be executed several times. Then, in order to avoid the mod
operation at each iteration, the array must be padded at each
iteration as well.

Considering hardware and software implementations, it is
reasonable to investigate a case in which the application of
a big padding operation 𝑝 = padl𝑛𝑖 ◦ padr𝑚𝑖 for some natural
numbers 𝑛,𝑚, 𝑖 at a given point in the program is cheaper
than applying parts of 𝑝 in different parts of the program.
For example, if the padding operation depends on inter-

process communication, it is usually significantly cheaper
to open one socket and send four elements than to open two
sockets each sending two elements (each opened connection
probably also requiring synchronization of some sort, etc).
We however consider unpadding to have negligible cost.

To reduce the number of loci where a padding operation
is required and to use the resulting padding efficiently, we
need to define a slightly more complex padding function as
well as further notation. We also need to define the notion
of padding exhaustion.

Informally, padding exhaustion corresponds to reaching a
state where there is not enough unconsumed padding left
to evaluate the expression and achieve our goals of using
padding. Padding exhaustion is related to consumption speed.
In our example, padding is exhausted when both of the equiv-
alent evaluation strategies stated in Proposition 8 fail to get
rid of all mod operations.

Ideally, this state is reached at the end of the computation
of all the expressions; if reached in the middle of execution,
the padding must be replenished to proceed.

21

ARRAY ’21, June 21, 2021, Virtual, Canada Benjamin Chetioui, Ole Abusdal, Magne Haveraaen, Jaakko Järvi, and Lenore Mullin

Definition 9. Let 𝐴 be an 𝑛-dimensional array with shape
⟨𝑠0 , . . . , 𝑠𝑛−1⟩. We can specify a 2𝑛-dimensional reshaping
𝐷 of 𝐴 by annotating each component 𝑠𝑖 of its shape with a
divisor 𝑑𝑖 such that 𝑠𝑖 ≡ 0 mod 𝑑𝑖 . We then reshape 𝐴 into
an array 𝐷 such that

𝜌 (𝐷) = ⟨𝑑0 , 𝑞0 , . . . , 𝑑𝑛−1 , 𝑞𝑛−1⟩
where 𝑞𝑖 = 𝑠𝑖

𝑑𝑖
. Assume we have

𝜌ann (𝐷) =
〈
𝑑
0,𝑑0
0 , 𝑞

𝑏0,𝑒0
0 , . . . , 𝑑

0,𝑑𝑛−1
𝑛−1 , 𝑞

𝑏𝑛−1,𝑒𝑛−1
𝑛−1

〉
.

Then, we can specify an 𝑛-dimensional slice 𝐵 of𝐴 such that

𝜌 (𝐵) = ⟨(𝑒0 − 𝑏0) × 𝑑0 , . . . , (𝑒𝑛−1 − 𝑏𝑛−1) × 𝑑𝑛−1⟩
and

𝐵𝐾𝑛

= 𝐷〈
𝑘0

𝑒0−𝑏0 , 𝑘0 mod (𝑒0−𝑏0) , ... ,
𝑘𝑛−1

𝑒𝑛−1−𝑏𝑛−1 , 𝑘𝑛−1 mod (𝑒𝑛−1−𝑏𝑛−1)
〉 .

We write

𝜌ann+ (𝐴) =
〈
𝑠
𝑑0,𝑏0,𝑒0
0 , . . . , 𝑠

𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1
𝑛−1

〉
the projection function that extracts this "distributed slice
annotation" from the array.
In the following definitions, we reuse the present definition
of 𝑞𝑖 .

Definition 10. Let 𝐴 be an array such that

𝜌ann+ (𝐴) =
〈
𝑠
𝑑0,𝑏0,𝑒0
0 , . . . , 𝑠

𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1
𝑛−1

〉
,

We define the padding-compatible dimension lifting opera-
tion on axis 𝑖 liftp𝑖 (𝐴) = 𝐵 such that 𝐵 has 𝑛 + 1 dimensions,

𝜌ann+ (𝐵) =
〈
𝑠
𝑑0,𝑏0,𝑒0
0 , . . . , 𝑑𝑖 , 𝑞

1,𝑏𝑖 ,𝑒𝑖
𝑖

, . . . , 𝑠
𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1
𝑛−1

〉
,

and
𝐵𝐾𝑖 = △(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 , 𝐴𝐾𝑖−1)) .

liftp is a version of lift that extracts its parameters from and
modifies the "distributed slice annotation" of the array.

Definition 11. Consider an array 𝐴 such that

𝜌ann+ (𝐴) =
〈
𝑠
𝑑0,𝑏0,𝑒0
0 , . . . , 𝑠

𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1
𝑛−1

〉
.

In a MoA setting without any notion of padding, any array
is implicitly annotated with 𝑑𝑖 = 1, 𝑏𝑖 = 0 and 𝑒𝑖 = 𝑠𝑖 on any
given axis 𝑖 . To properly use liftp as it is defined above, we
do the following: assuming 𝑏𝑖 = 0 and 𝑒𝑖 = 𝑠𝑖 for a given axis
𝑖 of 𝐴, we define the prelift operation on that axis for any
𝑑 ∈ {𝑑 : 𝑠𝑖 ≡ 0 mod 𝑑} as prelift𝑖 (𝑑,𝐴) = 𝐵,

𝜌ann+ (𝐵) =
〈
𝑠
𝑑0,𝑏0,𝑒0
0 , . . . , 𝑠

𝑑,0, 𝑠𝑖
𝑑

𝑖
, . . . , 𝑠

𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1
𝑛−1

〉
and

𝐵𝐾𝑛 = 𝐴𝐾𝑛 .

The precondition on prelift𝑖 means that it can only be applied
to arrays that are unpadded on axis 𝑖 .

Recall once again our running example

expr = ((1 \0 Arr) + (−1 \0 Arr)),
which we previously reduced to

∀𝑖 ∈ Fin 6, 𝑗 ∈ Fin 4,
(rav Arr) [((𝑖 + 1) mod 6) · 4 + 𝑗] +
(rav Arr) [((𝑖 − 1) mod 6) · 4 + 𝑗] .

using the 𝜓 -correspondence theorem while assuming a
single-core processor as the underlying hardware architec-
ture.

We wish to distribute the computation over two machines.
We will achieve this through a combination of dimension
lifting and padding. To distribute the computation over two
machines, it is natural to perform dimension lifting along the
0th axis of Arr, taking 𝑑0 = 2. We thus start out by creating a
new array Arr′ such that

Arr′ = prelift0 (2,Arr).
From Definition 11, we have that

𝜌ann+ (Arr′) =
〈
62,0,3, 4

〉
.

Since prelift0 does not modify the layout of the array it op-
erates on in any way, we have

expr = (1 \0 Arr′) + (−1 \0 Arr′).

Definition 12. Given an array 𝐴 with shape〈
𝑠
𝑑0,𝑏0,𝑒0
0 , . . . , 𝑠

𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1
𝑛−1

〉
and an integer 𝑖 ∈ Fin𝑛 we define the right pre-dimension
lifting padding operation on axis 𝑖 as dpadr𝑖 (𝐴) = 𝑅 such
that

liftp𝑖 (𝑅)𝐾𝑖 = cat(△(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 , 𝐴𝐾𝑖−1)),
𝐴 ⟨𝑘0 , ... , ((𝑘𝑖−1+2)×𝑞𝑖+𝑏𝑖−𝑒𝑖) mod 𝑠𝑖 ⟩)

for 𝑗 ∈ Fin 𝑖 and 𝑘 𝑗 ∈ Fin 𝑠 𝑗 .
Note that we consider operations on the axis 𝑖 to be done

in Fin𝑛, e.g. for 𝑖 = 0, we have 𝑘𝑖−1 = 𝑘𝑛−1.

The shape 𝜌ann+ (𝑅) is as in:〈
𝑠
𝑑0,𝑏0,𝑒0
0 , . . . , (𝑠𝑖 + 𝑑𝑖)𝑑𝑖 ,𝑏𝑖 ,𝑒𝑖 , . . . , 𝑠𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1𝑛−1

〉
.

In the same way, we define the left pre-dimension lifting
padding operation on axis 𝑖 as dpadl𝑖 (𝐴) = 𝐿 such that

liftp𝑖 (𝐿)𝐾𝑖 = cat(𝐴 ⟨𝑘0 , ... , ((𝑘𝑖−1−1)×𝑞𝑖+𝑒𝑖−𝑏𝑖−1) mod 𝑠𝑖 ⟩,

△(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 , 𝐴𝐾𝑖−1)))
The shape of 𝐿 is as in:〈

𝑠
𝑑0,𝑏0,𝑒0
0 , . . . , (𝑠𝑖 + 𝑑𝑖)𝑑𝑖 ,𝑏𝑖+1,𝑒𝑖+1, . . . , 𝑠𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1𝑛−1

〉
.

Finally, we call dpadl−1 (respectively dpadr−1) the left in-
verse function of dpadl (respectively dpadr).

22

Padding in the Mathematics of Arrays ARRAY ’21, June 21, 2021, Virtual, Canada

We are now ready to start padding Arr′. In this case, we
would like the two workers to only communicate at the start
and at the end of the computation. To do that, we need to
provide each machine with enough padding to do all of the
required computations in one go.

Similarly to the approach we took in the previous section,
we create a new array Arr′′ such that

Arr′′ = dpadl0 (dpadr0 (Arr′)) .
From Definition 12, we have that

𝜌ann+ (Arr′′) =
〈
102,1,4, 4

〉
and

Arr′′ =

©«

21 22 23 24
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
1 2 3 4

ª®®®®®®®®®®®®®®®¬

.

Finally, we create an array Arr+ = liftp0 (Arr′′). From Defini-
tion 10, we have:

𝜌ann+ (Arr+) =
〈
2, 51,4, 4

〉
and

Arr+⟨0⟩ =

©«
21 22 23 24
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

ª®®®®®¬
,

Arr+⟨1⟩ =

©«
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
1 2 3 4

ª®®®®®¬
.

By definition of dpadr and dpadl, we have the following:
expr

= dpadr−10 (dpadl−10 (dpadl0 (dpadr0 (expr))))
= dpadr−10 (dpadl−10 (liftp−10 (liftp0 (dpadl0 (dpadr0 (expr)))))).
Proposition 13. For a given axis 𝑖 , the functions dpadl𝑖 and
dpadr𝑖 commute, i.e.

dpadl𝑖 ◦ dpadr𝑖 = dpadr𝑖 ◦ dpadl𝑖 .
Proposition 13 can be proven using the associativity of

cat.

Proposition 14. Let 𝐴 be an array and 𝑖 ∈ Fin (dim(𝐴)).
Let

𝑅 = dpadr𝑖 (𝐴)
𝐿 = dpadl𝑖 (𝐴)

then

padr−1𝑖 (liftp𝑖 (𝑅)𝐾𝑖) = △(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 , 𝐴𝐾𝑖−1)) (1)

padl−1𝑖 (liftp𝑖 (𝐿)𝐾𝑖) = △(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 , 𝐴𝐾𝑖−1)) (2)

hold.

Proof. We give a proof for Equation 1:

padr−1𝑖 (liftp𝑖 (𝑅)𝐾𝑖)
= padr−1𝑖 (cat(△(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 , 𝐴𝐾𝑖−1)),

𝐴 ⟨𝑘0 , ... , ((𝑘𝑖−1+2)×𝑞𝑖+𝑏𝑖−𝑒𝑖) mod 𝑠𝑖 ⟩))
=△(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 , 𝐴𝐾𝑖−1)) .

The proof for Equation 2 follows the same pattern as the
above. □

Informally, Proposition 14 tells us that for a given array
𝐴′ resulting from padding and dimension lifting an array 𝐴
on an axis 𝑖 , unpadding and concatenating all the subarrays
resulting from the dimension lifting operation is the same
as concatenating them and unpadding the result.

Proposition 15. Let 𝐴 be an array without right padding
on its 𝑖th axis, i.e. an array such that

𝜌ann+ (𝐴) =
〈
𝑠
𝑑0,𝑏0,𝑒0
0 , . . . , 𝑠

𝑑𝑛−1,𝑏𝑛−1,𝑒𝑛−1
𝑛−1

〉
with 𝑒𝑖 = 𝑠𝑖 , 𝑖 ∈ Fin𝑛. Given an integer𝑚 ∈ Fin (𝑠𝑖 + 1), let
𝐴′ = dpadr𝑚𝑖 (𝐴). Then, the following holds:

liftp𝑖 (𝐴′)𝐾𝑖
= cat(△(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 , 𝐴𝐾𝑖−1)),

△(𝑚, ▽(((𝑘𝑖−1 + 1) × 𝑞𝑖 + 𝑏𝑖) mod 𝑠𝑖 , 𝐴𝐾𝑖−1)))
In the same way, for 𝐴 an array without left padding and
𝐴′′ = dpadl𝑚𝑖 (𝐴), then

liftp𝑖 (𝐴′′)𝐾𝑖
= cat(▽(𝑒𝑖 − 𝑏𝑖 −𝑚,

△(𝑒𝑖 − 𝑏𝑖 , ▽((𝑘𝑖−1 − 1) × 𝑞𝑖 mod 𝑠𝑖 , 𝐴𝐾𝑖−1))),
△(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 , 𝐴𝐾𝑖−1)))

holds.

A proof for Proposition 15 may be written using induction
on𝑚, like the proof for Proposition 5.

Proposition 16. Let 𝐵,𝐶 be𝑛-dimensional MoA expressions
with identical shapes and ⊕ a binary map operation. Then,
liftp𝑖 distributes over ⊕, i.e.

liftp𝑖 (𝐵 ⊕ 𝐶) = liftp𝑖 (𝐵) ⊕ liftp(𝐶) (3)

for any axis 𝑖 of 𝐵 and 𝐶 . This idea is trivially extensible to
n-ary map operations.

Proposition 16 can be proven using the definition of liftp,
and the shape-conserving property of n-ary map operations.

23

ARRAY ’21, June 21, 2021, Virtual, Canada Benjamin Chetioui, Ole Abusdal, Magne Haveraaen, Jaakko Järvi, and Lenore Mullin

Proposition 17. Let 𝐵,𝐶 be𝑛-dimensional MoA expressions
with identical shapes and ⊕ a binary map operation. Then,
dpadr𝑖 distributes over ⊕, i.e.

dpadr𝑖 (𝐵 ⊕ 𝐶) = dpadr𝑖 (𝐵) ⊕ dpadr𝑖 (𝐶). (4)

Similarly, we have that

dpadl𝑖 (𝐵 ⊕ 𝐶) = dpadl𝑖 (𝐵) ⊕ dpadl𝑖 (𝐶). (5)

This idea is trivially extensible to n-ary map operations.

Proof. To improve readability, we write

𝑇𝑖 = ⟨𝑘0 , . . . , ((𝑘𝑖−1 + 2) × 𝑞𝑖 + 𝑏𝑖 − 𝑒𝑖) mod 𝑠𝑖⟩ .

Since ⊕ is a binary map operation, we have:

(liftp𝑖 (dpadr𝑖 (𝐵)) ⊕ liftp𝑖 (dpadr𝑖 (𝐶)))𝐾𝑖 =
cat(△(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 , 𝐵𝐾𝑖−1)), 𝐵𝑇𝑖) ⊕
cat(△(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 ,𝐶𝐾𝑖−1)),𝐶𝑇𝑖)

⇔ (liftp𝑖 (dpadr𝑖 (𝐵)) ⊕ liftp𝑖 (dpadr𝑖 (𝐶)))𝐾𝑖 =
cat(△(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 , 𝐵𝐾𝑖−1)) ⊕ △(𝑞𝑖 , ▽(𝑘𝑖−1 × 𝑞𝑖 ,𝐶𝐾𝑖−1)),

𝐵𝑇𝑖 ⊕ 𝐶𝑇𝑖)
⇔ (liftp𝑖 (dpadr𝑖 (𝐵)) ⊕ liftp𝑖 (dpadr𝑖 (𝐶)))𝐾𝑖 =

(liftp𝑖 (dpadr𝑖 (𝐵 ⊕ 𝐶)))𝐾𝑖
⇔ liftp𝑖 (dpadr𝑖 (𝐵)) ⊕ liftp𝑖 (dpadr𝑖 (𝐶)) =

liftp𝑖 (dpadr𝑖 (𝐵 ⊕ 𝐶))
⇔ dpadr𝑖 (𝐵) ⊕ dpadr𝑖 (𝐶) = dpadr𝑖 (𝐵 ⊕ 𝐶).

The proof for Equation 5 follows the same pattern as above.
Since it does not provide any additional insight, we do not
develop it here. □

By applying Propositions 16 and 17 in our example, we
get:

expr = dpadr−10 (dpadl−10 (liftp−10 (
liftp0 (dpadl0 (dpadr0 (1 \0 Arr))) +
liftp0 (dpadl0 (dpadr0 (−1 \0 Arr)))))).

Proposition 18. Let 𝐴 be a 𝑛-dimensional unpadded MoA
expression, 𝑗 an axis of𝐴 and 𝑟 an integer. Then, on any axis
𝑖 of 𝐴, we have that

𝑟 \ 𝑗 𝐴 = dpadr−𝑚2
𝑖

(dpadl−𝑚1
𝑖

(liftp−1𝑖 (
liftp𝑖 (dpadl

𝑚1
𝑖

(dpadr𝑚2
𝑖

(𝑟 \ 𝑗 𝐴))))))
= dpadr−𝑚2

𝑖
(dpadl−𝑚1

𝑖
(liftp−1𝑖 (

𝑟 \ 𝑗 liftp𝑖 (dpadl
𝑚1
𝑖

(dpadr𝑚2
𝑖

(𝐴))))))

holds if either one of the following cases holds:
(i) 𝑗 ≠ 𝑖;
(ii) 𝑟 = 0;
(iii) 𝑟 < 0 and𝑚2 ≥ |𝑟 |;
(iv) 𝑟 > 0 and𝑚1 ≥ 𝑟 .

The proof for Proposition 18 follows the same pattern as
the proof for Proposition 7.

We can now apply Proposition 18 in our example, and get:

expr

= dpadr−10 (dpadl−10 (liftp−10 (
(1 \0 liftp0 (dpadl0 (dpadr0 (Arr)))) +
(−1 \0 liftp0 (dpadl0 (dpadr0 (Arr)))))))

= dpadr−10 (dpadl−10 (liftp−10 ((1 \0 Arr+) + (−1 \0 Arr+)))).

We can now transform the resulting expression expr to ONF
for each machine. The bounds of 𝑖 and 𝑗 are once again given
by Proposition 8. Thus, for 𝑐 ∈ {0, 1}, we have the following:

∀𝑖 ∈ {𝑖 ∈ Fin 5 : 1 ≤ 𝑖 < 4},
⟨𝑖⟩ 𝜓 ((1 \0 Arr+⟨𝑐 ⟩) + (−1 \0 Arr+⟨𝑐 ⟩))

≡ (rav Arr+⟨𝑐 ⟩) [𝛾 (⟨𝑖 + 1⟩ ; ⟨5⟩) × 4 +]4] +
(rav Arr+⟨𝑐 ⟩) [𝛾 (⟨𝑖 − 1⟩ ; ⟨5⟩) × 4 +]4] .

We then apply 𝛾 , rav and turn] into a loop, and we get the
following generic program:

∀𝑖 ∈ {𝑖 ∈ Fin 5 : 1 ≤ 𝑖 < 4}, 𝑗 ∈ Fin 4,
(rav Arr+⟨𝑐 ⟩) [(𝑖 + 1) × 4 + 𝑗] +
(rav Arr+⟨𝑐 ⟩) [(𝑖 − 1) × 4 + 𝑗] .

Finally, we join the results using liftp−10 and apply dpadl−10
and dpadr−10 to obtain the same result as we would have
gotten evaluating expr directly. Moreover, in this case, both
expressions had the same number of loop iterations, and
exactly all the padding was consumed in the computation.

In practice however, what we studied above corresponds to
a single step of the PDE solver. Assume the same scenario as
above, except that the solver actually runs this step two times.
For simplicity, we generalize expr to a function step such that,
for any array 𝐴, step(𝐴) = expr[Arr := 𝐴]. Two sequential
executions of step would then be written as step2 (𝐴).

According to Proposition 8, we have speed0 (expr) = (1, 1).
Thus, for the padding to last two steps and thus avoid padding
exhaustion before the end of the full computation, we need
to pad the 0th axis of 𝐴𝑚𝑙 times on the left and𝑚𝑟 times on
the right, where𝑚𝑙 and𝑚𝑟 are given by:

(𝑚𝑙 ,𝑚𝑟) = 2 × speed0 (expr) = 2 × (1, 1) = (2, 2).

We start again by creating an array Arr′′ such that

Arr′′ = dpadl20 (dpadr20 (Arr′)) .

From Definition 12, we have that

𝜌ann+ (Arr′′) =
〈
142,2,5 4

〉
24

Padding in the Mathematics of Arrays ARRAY ’21, June 21, 2021, Virtual, Canada

and

Arr′′ =

©«

17 18 19 20
21 22 23 24
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
1 2 3 4
5 6 7 8

ª®®®®®®®®®®®®®®®®®®®®®®®¬

.

We create an array Arr++ = liftp(Arr′′). From Definition 10:

𝜌ann+ (Arr++) =
〈
2, 72,5, 4

〉
and

Arr++⟨0⟩ =

©«

17 18 19 20
21 22 23 24
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20

ª®®®®®®®®®¬
,

Arr++⟨1⟩ =

©«

5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
1 2 3 4
5 6 7 8

ª®®®®®®®®®¬
.

Once again, using Proposition 17 and Proposition 18, we get

step2 (Arr) = dpadr−20 (dpadl−20 (liftp−10 (step2 (Arr++)))).
We can now transform the resulting expression expr to ONF
for each machine. The bounds of 𝑖 and 𝑗 are once again given
by Proposition 8. Thus, for 𝑐 ∈ {0, 1}, we have the following:
∀𝑖 ∈ {𝑖 ∈ Fin 7 : 1 ≤ 𝑖 < 6},

⟨𝑖⟩ 𝜓 ((1 \0 Arr++⟨𝑐 ⟩) + (−1 \0 Arr++⟨𝑐 ⟩))
≡ (rav Arr++⟨𝑐 ⟩) [𝛾 (⟨𝑖 + 1⟩ ; ⟨7⟩) × 4 +]4] +
(rav Arr++⟨𝑐 ⟩) [𝛾 (⟨𝑖 − 1⟩ ; ⟨7⟩) × 4 +]4] .

We one again apply 𝛾 , rav and turn] into a loop, and we get
the following generic program:

∀𝑖 ∈ {𝑖 ∈ Fin 7 : 1 ≤ 𝑖 < 6}, 𝑗 ∈ Fin 4,
(rav Arr++⟨𝑐 ⟩) [(𝑖 + 1) × 4 + 𝑗] +
(rav Arr++⟨𝑐 ⟩) [(𝑖 − 1) × 4 + 𝑗] .

At that point, we can rewrite our expression as such:

step2 (Arr)

Table 2. Execution time (in seconds) of a 3-dimensional
PDE solver C implementation compiled with GCC 8.2.0 with
different padding parameters on a single core. CPU 1: Intel(R)
Xeon(R) Gold 6130 CPU@ 2.10GHz; CPU 2: AMD EPYC 7601
32-Core; CPU 3: Intel(R) Xeon(R) Silver 4112 CPU@2.60GHz;
and CPU 4: ThunderX2 CN9980. The code of the experiments
is at https://github.com/mathematics-of-arrays/padding-in-
the-mathematics-of-arrays.

No padding Padding axis 2 Padding axis 3
CPU 1 225.74 168.59 167.84
CPU 2 299.42 119.61 120.12
CPU 3 172.71 160.51 192.70
CPU 4 660.53 347.47 357.32

= dpadr−20 (dpadl−20 (liftp−10 (step2 (Arr++))))
= dpadr−10 (dpadl−10 (liftp−10 (step(
liftp0 (dpadr−10 (dpadl−10 (liftp−10 (step(Arr++))))))))) .

But here, as given by Proposition 14, applying

liftp0 ◦ dpadr−10 ◦ dpadl−10 ◦ liftp−10
to step(Arr++) is equivalent to applying padr−10 and padl−10
once to both Arr++⟨0⟩ and Arr++⟨1⟩ . As a result, for 𝑐 ∈ {0, 1},

𝜌ann+ (padr−10 (padl−10 (Arr++⟨𝑐 ⟩))) =
〈
51,4, 4

〉
.

The rest of the computation follows the single step dis-
tributed case presented above. Note that in this case four
intermediate rows of the result were computed twice (once
on each machine), resulting in four additional outer loop
iterations compared to the equivalent single machine un-
padded two-step case. Thus, getting rid of inter-process com-
munication involved both data redundancy and duplicated
calculations. Whether performing calculations several times
instead of exchanging states between different computation
loci is beneficial, must be determined based on hardware-
dependent cost functions.

6 Experiments
We extended the scenario depicted in Section 5.1 to our im-
plementation of a PDE solver using a (−1, 0, 1) stencil along
every axis; that is, at every derivation step the left and right
padding operation are applied once along the specified axis.
The memory overhead of such padding is roughly 0.4% in our
example. The execution times of 50 derivation steps given
different padding parameters are gathered in Table 2.
We see a performance improvement on CPU 1, 2, and 4

between the original code in which no padding was applied
and the cases with padding on either axis. The difference
is particularly striking on CPU 2 and 4, where the program
runs roughly twice as fast when padding is applied.

25

https://github.com/mathematics-of-arrays/padding-in-the-mathematics-of-arrays
https://github.com/mathematics-of-arrays/padding-in-the-mathematics-of-arrays

ARRAY ’21, June 21, 2021, Virtual, Canada Benjamin Chetioui, Ole Abusdal, Magne Haveraaen, Jaakko Järvi, and Lenore Mullin

This large difference seems to indicate that padding allows
the compiler to perform better optimizations on these archi-
tectures. This analysis is corroborated by the output of perf
stat: on CPU 2 and 4, the runs without padding execute 2 to
2.5 times as many instructions as their padded counterparts.
On CPU 3, padding the last axis makes execution slower.

Looking at the output of perf stat tells us that both padded
programs execute roughly 87% as many instructions as the
unpadded one. When the last axis is padded, the number of
executed instructions per cycle (IPC) drops to 81%. That run
should last roughly 87

81 = 1.07 times as long as the unpadded
one. This is in line with our measurements. One possible
explanation is that GCC does not properly take into account
the costs of the instructions involved in the computation.

The number of instructions run on CPU 1 and CPU 3 are
close. However, the drop in IPC is much smaller on CPU 1,
resulting in a slight performance improvement.
It is hard to quantify the impact of the padding on data

locality and cache line usage. The percentage of measured
cache misses in all the programs is roughly the same for all
three runs for a given architecture.
These experiments further confirm the need for a vehi-

cle for easy exploration of codes that implement different
memory layouts.
Further work is needed to explore tiling in this setting.

This is because tiling requires reorganizing data within ar-
rays using transpose, which we did not study here.

7 Conclusion
We showed that MoA provides the required building blocks
to discuss padding as well as data distribution given an arbi-
trary architecture. It is thus well-suited to explore the space
of optimal computations for array expressions at a high level
of abstraction. Along the way, we built two examples demon-
strating exactly how to use these notions to optimize stencil
computations. Our approach could be implemented as a com-
piler optimization to automatically rewrite array expressions
based on hardware and known operational costs. We expect
future work to focus both on better quantifying the bene-
fit of using this approach instead of existing solutions and
on implementing MoA and its properties using proof assis-
tants. For the latter, effort is already underway at https:
//github.com/mathematics-of-arrays/moa-formalization.

Acknowledgments
We thank Jonathan Prieto-Cubides and Wrya Kadir for their
helpful feedback on early drafts of the paper. We also give
our thanks to Jeremy Gibbons and our anonymous reviewers
for their constructive and insightful comments of our paper.
The research presented in this paper has benefited from the
Experiment Infrastructure for Exploration of Exascale Com-
puting (eX3), which is financially supported by the Research
Council of Norway under contract 270053.

References
[1] Philip Samuel Abrams. 1970. An APL machine. Ph.D. Dissertation.

Stanford University, Stanford, CA, USA.
[2] Ole Jørgen Abusdal. 2020. Transformations for Array programming.

Master’s thesis. The University of Bergen. https://doi.org/10.13140/R
G.2.2.33970.73923

[3] Eva Burrows, Helmer André Friis, and Magne Haveraaen. 2018. An
Array API for Finite Difference Methods. In Proceedings of the 5th
ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming (Philadelphia, PA, USA) (ARRAY
2018). ACM, New York, NY, USA, 59–66. https://doi.org/10.1145/3219
753.3219761

[4] Benjamin Chetioui, Lenore Mullin, Ole Abusdal, Magne Haveraaen,
Jaakko Järvi, and Sandra Macià. 2019. Finite Difference Methods Feng-
shui: Alignment through a Mathematics of Arrays. In Proceedings of
the 6th ACM SIGPLAN International Workshop on Libraries, Languages
and Compilers for Array Programming (Phoenix, AZ, USA) (ARRAY
2019). Association for Computing Machinery, New York, NY, USA,
2–13. https://doi.org/10.1145/3315454.3329954

[5] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,
and Christophe Dubach. 2018. High Performance Stencil Code Gener-
ation with Lift. In Proceedings of the 2018 International Symposium on
Code Generation and Optimization (Vienna, Austria) (CGO 2018). ACM,
New York, NY, USA, 100–112. https://doi.org/10.1145/3168824

[6] Harry B. Hunt III, Lenore R. Mullin, Daniel J. Rosenkrantz, and James E.
Raynolds. 2008. A Transformation–Based Approach for the Design of
Parallel/Distributed Scientific Software: the FFT. CoRR abs/0811.2535
(2008). arXiv:0811.2535 http://arxiv.org/abs/0811.2535

[7] K. E. Iverson. 1962. A Programming Language. Wiley, New York.
[8] Fredrik Berg Kjolstad and Marc Snir. 2010. Ghost Cell Pattern. In

Proceedings of the 2010 Workshop on Parallel Programming Patterns
(Carefree, Arizona, USA) (ParaPLoP ’10). Association for Computing
Machinery, New York, NY, USA, Article 4, 9 pages. https://doi.org/10
.1145/1953611.1953615

[9] Daniel Lemire, Owen Kaser, and Nathan Kurz. 2019. Faster remainder
by direct computation: Applications to compilers and software libraries.
Softw., Pract. Exper. 49, 6 (2019), 953–970. https://doi.org/10.1002/spe.
2689

[10] Lenore Mullin. 1988. A Mathematics of Arrays. Ph.D. Dissertation.
Syracuse University.

[11] Lenore M. R. Mullin and Michael A. Jenkins. 1996. Effective data
parallel computation using the Psi calculus. Concurrency - Practice and
Experience 8, 7 (1996), 499–515. https://doi.org/10.1002/(SICI)1096-
9128(199609)8:7<499::AID-CPE230>3.0.CO;2-1

[12] Paul Chang and Lenore R. Mullin. 2002. An Optimized QR Factorization
Algorithm based on a Calculus of Indexing. Technical Report. MIT
Lincoln Laboratory. https://doi.org/10.13140/2.1.4938.2722

[13] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. 2017.
Lift: A Functional Data-Parallel IR for High-Performance GPU Code
Generation. In Proceedings of the 2017 International Symposium on
Code Generation and Optimization (Austin, USA) (CGO ’17). IEEE Press,
74–85. https://doi.org/10.1109/CGO.2017.7863730

[14] Artjoms Šinkarovs, Robert Bernecky, and Sven-Bodo Scholz. 2019.
Convolutional Neural Networks in APL. In Proceedings of the 6th ACM
SIGPLAN InternationalWorkshop on Libraries, Languages and Compilers
for Array Programming (Phoenix, AZ, USA) (ARRAY 2019). Association
for Computing Machinery, New York, NY, USA, 69–79. https://doi.or
g/10.1145/3315454.3329960

[15] Artjoms Šinkarovs. 2015. Data Layout Types: a type-based approach to
automatic data layout transformations for improved SIMD vectorisation.
Ph.D. Dissertation. School of Mathematical and Computer Sciences,
Heriot-Watt University, Heriot-Watt University, Edinburgh Campus,
Edinburgh, Scotland, EH14 4AS. https://www.ros.hw.ac.uk/handle/10
399/2880

26

https://github.com/mathematics-of-arrays/moa-formalization
https://github.com/mathematics-of-arrays/moa-formalization
https://doi.org/10.13140/RG.2.2.33970.73923
https://doi.org/10.13140/RG.2.2.33970.73923
https://doi.org/10.1145/3219753.3219761
https://doi.org/10.1145/3219753.3219761
https://doi.org/10.1145/3315454.3329954
https://doi.org/10.1145/3168824
https://arxiv.org/abs/0811.2535
http://arxiv.org/abs/0811.2535
https://doi.org/10.1145/1953611.1953615
https://doi.org/10.1145/1953611.1953615
https://doi.org/10.1002/spe.2689
https://doi.org/10.1002/spe.2689
https://doi.org/10.1002/(SICI)1096-9128(199609)8:7<499::AID-CPE230>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1096-9128(199609)8:7<499::AID-CPE230>3.0.CO;2-1
https://doi.org/10.13140/2.1.4938.2722
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1145/3315454.3329960
https://doi.org/10.1145/3315454.3329960
https://www.ros.hw.ac.uk/handle/10399/2880
https://www.ros.hw.ac.uk/handle/10399/2880

	Abstract
	1 Introduction
	2 Motivation
	3 Related
	4 MoA Background and Notation
	4.1 Relevant MoA Operations at the DNF level
	4.2 Relevant MoA Operations at the ONF level

	5 Memory Layout in the MoA
	5.1 Case of One Core and Constant Memory Access Cost
	5.2 Case of Non-Uniform Memory Access

	6 Experiments
	7 Conclusion
	Acknowledgments
	References

